{"title":"SUCLG1促进网状神经纤维瘤的有氧呼吸和进展。","authors":"Zifu Zhou, Qingfeng Li, Ran Huo","doi":"10.3892/ijo.2024.5716","DOIUrl":null,"url":null,"abstract":"<p><p>Plexiform neurofibromas (PNFs) are benign tumors that affect 20‑50% of patients with type I neurofibromatosis (NF1). PNF carries a risk of malignancy. There is no effective cure for PNF. Its onset may be associated with genetic and metabolic abnormalities, but the exact mechanisms remain unclear. Succinate‑CoA ligase GDP/ADP‑Forming Subunit α(SUCLG1), a catalytic enzyme in the tricarboxylic acid cycle, is highly expressed in PNF. The present study aimed to explore the role of SUCLG1 in function and metabolism of PNF cells. SUCLG1 expression was verified using western blotting and immunofluorescence. After inducing SUCLG1 knockdown and overexpression, functional changes in PNF cells were assessed, as well as effects of SUCLG1 on cell respiration and glucose metabolism. Quantitative PCR, WB, electron microscopy and Flow cytometry demonstrated that SUCLG1 enhanced mitochondrial quality and promoted mitochondrial fusion, thereby driving proliferation and migration of tumor cells, inhibiting apoptosis and altering the cell cycle. A Seahorse assay showed that elevated SUCLG1 expression enhanced cell aerobic respiration without affecting the glycolytic process. This suggests that SUCLG1 upregulation in PNF does not trigger the Warburg effect associated with malignant tumors. This study also demonstrated the positive regulation of cellular function by promoting the expression level of the <i>SLC25A1</i> gene when SUCLG1 expression was elevated. In conclusion, SUCLG1 altered the mechanism of mitochondrial quality control to enhance cell aerobic respiration, thereby driving the pathogenesis of PNF. Thus, SUCLG1 can serve as a potential target in future therapeutic strategies.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"66 2","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753773/pdf/","citationCount":"0","resultStr":"{\"title\":\"SUCLG1 promotes aerobic respiration and progression in plexiform neurofibroma.\",\"authors\":\"Zifu Zhou, Qingfeng Li, Ran Huo\",\"doi\":\"10.3892/ijo.2024.5716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plexiform neurofibromas (PNFs) are benign tumors that affect 20‑50% of patients with type I neurofibromatosis (NF1). PNF carries a risk of malignancy. There is no effective cure for PNF. Its onset may be associated with genetic and metabolic abnormalities, but the exact mechanisms remain unclear. Succinate‑CoA ligase GDP/ADP‑Forming Subunit α(SUCLG1), a catalytic enzyme in the tricarboxylic acid cycle, is highly expressed in PNF. The present study aimed to explore the role of SUCLG1 in function and metabolism of PNF cells. SUCLG1 expression was verified using western blotting and immunofluorescence. After inducing SUCLG1 knockdown and overexpression, functional changes in PNF cells were assessed, as well as effects of SUCLG1 on cell respiration and glucose metabolism. Quantitative PCR, WB, electron microscopy and Flow cytometry demonstrated that SUCLG1 enhanced mitochondrial quality and promoted mitochondrial fusion, thereby driving proliferation and migration of tumor cells, inhibiting apoptosis and altering the cell cycle. A Seahorse assay showed that elevated SUCLG1 expression enhanced cell aerobic respiration without affecting the glycolytic process. This suggests that SUCLG1 upregulation in PNF does not trigger the Warburg effect associated with malignant tumors. This study also demonstrated the positive regulation of cellular function by promoting the expression level of the <i>SLC25A1</i> gene when SUCLG1 expression was elevated. In conclusion, SUCLG1 altered the mechanism of mitochondrial quality control to enhance cell aerobic respiration, thereby driving the pathogenesis of PNF. Thus, SUCLG1 can serve as a potential target in future therapeutic strategies.</p>\",\"PeriodicalId\":14175,\"journal\":{\"name\":\"International journal of oncology\",\"volume\":\"66 2\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753773/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijo.2024.5716\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijo.2024.5716","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
SUCLG1 promotes aerobic respiration and progression in plexiform neurofibroma.
Plexiform neurofibromas (PNFs) are benign tumors that affect 20‑50% of patients with type I neurofibromatosis (NF1). PNF carries a risk of malignancy. There is no effective cure for PNF. Its onset may be associated with genetic and metabolic abnormalities, but the exact mechanisms remain unclear. Succinate‑CoA ligase GDP/ADP‑Forming Subunit α(SUCLG1), a catalytic enzyme in the tricarboxylic acid cycle, is highly expressed in PNF. The present study aimed to explore the role of SUCLG1 in function and metabolism of PNF cells. SUCLG1 expression was verified using western blotting and immunofluorescence. After inducing SUCLG1 knockdown and overexpression, functional changes in PNF cells were assessed, as well as effects of SUCLG1 on cell respiration and glucose metabolism. Quantitative PCR, WB, electron microscopy and Flow cytometry demonstrated that SUCLG1 enhanced mitochondrial quality and promoted mitochondrial fusion, thereby driving proliferation and migration of tumor cells, inhibiting apoptosis and altering the cell cycle. A Seahorse assay showed that elevated SUCLG1 expression enhanced cell aerobic respiration without affecting the glycolytic process. This suggests that SUCLG1 upregulation in PNF does not trigger the Warburg effect associated with malignant tumors. This study also demonstrated the positive regulation of cellular function by promoting the expression level of the SLC25A1 gene when SUCLG1 expression was elevated. In conclusion, SUCLG1 altered the mechanism of mitochondrial quality control to enhance cell aerobic respiration, thereby driving the pathogenesis of PNF. Thus, SUCLG1 can serve as a potential target in future therapeutic strategies.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.