Seda Koçak , Hasan Çalışkan , Göktuğ Ömercioğlu , Fırat Akat , Deniz Billur , İrem İnanç , Hakan Fıçıcılar , Metin Baştuğ
{"title":"高强度间歇训练对多囊卵巢综合征大鼠模型胰岛素抵抗、氧化应激和肌肉功能的影响","authors":"Seda Koçak , Hasan Çalışkan , Göktuğ Ömercioğlu , Fırat Akat , Deniz Billur , İrem İnanç , Hakan Fıçıcılar , Metin Baştuğ","doi":"10.1016/j.physbeh.2024.114794","DOIUrl":null,"url":null,"abstract":"<div><div>Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders . This study aimed to investigate the effects of high-intensity interval training (HIIT) on insulin resistance, oxidative stress, soleus muscle function, and myokine levels in a PCOS rat model. Female rats were assigned to four groups: Control, PCOS, PCOS+Exercise, and Exercise (<em>n</em>=15 each). PCOS was induced by subcutaneous administration of dehydroepiandrosterone (DHEA) for 3 weeks, and exercise groups underwent HIIT for 12 weeks. Insulin resistance (HOMA-IR), serum oxidative stress markers, hormone levels (FSH, LH), soleus myokine expression, and muscle function were analyzed. Results showed that the PCOS group exhibited increased blood pressure and insulin resistance compared to controls, with a significant reduction in FSH and LH levels in the PCOS+Exercise group. Exercise improved insulin sensitivity and reduced insulin resistance in the PCOS+Exercise group. Serum oxidative stress markers did not differ significantly between groups. Soleus muscle IL-6 levels were significantly reduced in the PCOS+Exercise group. Histological analysis revealed a larger cross-sectional area of the soleus muscle in the PCOS+Exercise group compared to the PCOS group, suggesting improved muscle morphology. Furthermore, exercise improved the functional capacity of soleus muscles, as evidenced by weightlifting performance. These findings indicate that HIIT has beneficial effects on insulin resistance, reproductive hormone levels in PCOS. Exercise also shows potential in slowing oocyte loss and improving follicle health, highlighting its role as a therapeutic intervention for reproductive health in PCOS. This study suggests that HIIT could be a beneficial approach for managing PCOS, and further research is needed to better understand its underlying mechanisms and potential long-term benefits.</div></div>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":"291 ","pages":"Article 114794"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of high-intensity interval training on insulin resistance, oxidative stress, and muscle function in a PCOS rat model\",\"authors\":\"Seda Koçak , Hasan Çalışkan , Göktuğ Ömercioğlu , Fırat Akat , Deniz Billur , İrem İnanç , Hakan Fıçıcılar , Metin Baştuğ\",\"doi\":\"10.1016/j.physbeh.2024.114794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders . This study aimed to investigate the effects of high-intensity interval training (HIIT) on insulin resistance, oxidative stress, soleus muscle function, and myokine levels in a PCOS rat model. Female rats were assigned to four groups: Control, PCOS, PCOS+Exercise, and Exercise (<em>n</em>=15 each). PCOS was induced by subcutaneous administration of dehydroepiandrosterone (DHEA) for 3 weeks, and exercise groups underwent HIIT for 12 weeks. Insulin resistance (HOMA-IR), serum oxidative stress markers, hormone levels (FSH, LH), soleus myokine expression, and muscle function were analyzed. Results showed that the PCOS group exhibited increased blood pressure and insulin resistance compared to controls, with a significant reduction in FSH and LH levels in the PCOS+Exercise group. Exercise improved insulin sensitivity and reduced insulin resistance in the PCOS+Exercise group. Serum oxidative stress markers did not differ significantly between groups. Soleus muscle IL-6 levels were significantly reduced in the PCOS+Exercise group. Histological analysis revealed a larger cross-sectional area of the soleus muscle in the PCOS+Exercise group compared to the PCOS group, suggesting improved muscle morphology. Furthermore, exercise improved the functional capacity of soleus muscles, as evidenced by weightlifting performance. These findings indicate that HIIT has beneficial effects on insulin resistance, reproductive hormone levels in PCOS. Exercise also shows potential in slowing oocyte loss and improving follicle health, highlighting its role as a therapeutic intervention for reproductive health in PCOS. This study suggests that HIIT could be a beneficial approach for managing PCOS, and further research is needed to better understand its underlying mechanisms and potential long-term benefits.</div></div>\",\"PeriodicalId\":20201,\"journal\":{\"name\":\"Physiology & Behavior\",\"volume\":\"291 \",\"pages\":\"Article 114794\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology & Behavior\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031938424003421\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031938424003421","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
The impact of high-intensity interval training on insulin resistance, oxidative stress, and muscle function in a PCOS rat model
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders . This study aimed to investigate the effects of high-intensity interval training (HIIT) on insulin resistance, oxidative stress, soleus muscle function, and myokine levels in a PCOS rat model. Female rats were assigned to four groups: Control, PCOS, PCOS+Exercise, and Exercise (n=15 each). PCOS was induced by subcutaneous administration of dehydroepiandrosterone (DHEA) for 3 weeks, and exercise groups underwent HIIT for 12 weeks. Insulin resistance (HOMA-IR), serum oxidative stress markers, hormone levels (FSH, LH), soleus myokine expression, and muscle function were analyzed. Results showed that the PCOS group exhibited increased blood pressure and insulin resistance compared to controls, with a significant reduction in FSH and LH levels in the PCOS+Exercise group. Exercise improved insulin sensitivity and reduced insulin resistance in the PCOS+Exercise group. Serum oxidative stress markers did not differ significantly between groups. Soleus muscle IL-6 levels were significantly reduced in the PCOS+Exercise group. Histological analysis revealed a larger cross-sectional area of the soleus muscle in the PCOS+Exercise group compared to the PCOS group, suggesting improved muscle morphology. Furthermore, exercise improved the functional capacity of soleus muscles, as evidenced by weightlifting performance. These findings indicate that HIIT has beneficial effects on insulin resistance, reproductive hormone levels in PCOS. Exercise also shows potential in slowing oocyte loss and improving follicle health, highlighting its role as a therapeutic intervention for reproductive health in PCOS. This study suggests that HIIT could be a beneficial approach for managing PCOS, and further research is needed to better understand its underlying mechanisms and potential long-term benefits.
期刊介绍:
Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.