综合分析超重/肥胖儿童的甲基组和转录组对运动训练的反应

IF 2.5 4区 生物学 Q3 CELL BIOLOGY Physiological genomics Pub Date : 2025-02-01 Epub Date: 2025-01-03 DOI:10.1152/physiolgenomics.00059.2024
Abel Plaza-Florido, Augusto Anguita-Ruiz, Francisco J Esteban, Concepción M Aguilera, Idoia Labayen, Stefan Markus Reitzner, Carl Johan Sundberg, Shlomit Radom-Aizik, Francisco B Ortega, Signe Altmäe
{"title":"综合分析超重/肥胖儿童的甲基组和转录组对运动训练的反应","authors":"Abel Plaza-Florido, Augusto Anguita-Ruiz, Francisco J Esteban, Concepción M Aguilera, Idoia Labayen, Stefan Markus Reitzner, Carl Johan Sundberg, Shlomit Radom-Aizik, Francisco B Ortega, Signe Altmäe","doi":"10.1152/physiolgenomics.00059.2024","DOIUrl":null,"url":null,"abstract":"<p><p>We examined the effects of a 20-wk exercise intervention on whole blood genome-wide DNA methylation signature and its association with the exercise-induced changes in gene expression profiles in boys and girls with overweight/obesity (OW/OB). Twenty-three children (10.05 ± 1.39 yr, 56% girls) with OW/OB were randomized to either a 20-wk exercise intervention [exercise group (EG); <i>n</i> = 10; 4 boys/6 girls] or to usual lifestyle [control group (CG); <i>n</i> = 13; 6 boys/7 girls]. Whole blood genome-wide methylome (CpG sites) analysis using Infinium Methylation EPIC array and transcriptome analysis using RNA-seq (STRT2 protocol) were performed. Exercise-induced modifications in DNA methylation at 485 and 386 CpGs sites in boys and girls, respectively. These CpG sites are mapped to loci enriched in distinct gene pathways related to metabolic diseases, fatty acid metabolism, and immune function. In boys, changes in the DNA methylation of 87 CpG sites (18% of the 485 CpGs sites altered by exercise) were associated with changes in the gene expression levels of 51 genes also regulated by exercise. Among girls, changes in DNA methylation at 46 CpG sites (12% of the initial 386 significant CpGs) were associated with changes in the expression levels of 30 exercise-affected genes. Genes affected by exercise that were associated with DNA methylation are related to obesity, metabolic syndrome, and inflammation. Multiomics analysis of whole blood samples from children with OW/OB suggests that gene expression response to exercise may be modulated by DNA methylation and involve gene pathways related to metabolism and immune functions.<b>NEW & NOTEWORTHY</b> This study pioneers the exploration into the effects of exercise on whole blood genome-wide DNA methylation patterns and its association with changes in transcriptome profiles in children with overweight/obesity. Exercise potentially impacts molecular pathways involved in metabolism and immune functions in children with overweight/obesity (sex-specific responses) through the modification of epigenetic and transcriptomic profiles. Our preliminary results provide initial steps to understand better the molecular mechanisms underlying cardiometabolic benefits of exercise in children with overweight/obesity.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"91-102"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated analysis of methylome and transcriptome responses to exercise training in children with overweight/obesity.\",\"authors\":\"Abel Plaza-Florido, Augusto Anguita-Ruiz, Francisco J Esteban, Concepción M Aguilera, Idoia Labayen, Stefan Markus Reitzner, Carl Johan Sundberg, Shlomit Radom-Aizik, Francisco B Ortega, Signe Altmäe\",\"doi\":\"10.1152/physiolgenomics.00059.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We examined the effects of a 20-wk exercise intervention on whole blood genome-wide DNA methylation signature and its association with the exercise-induced changes in gene expression profiles in boys and girls with overweight/obesity (OW/OB). Twenty-three children (10.05 ± 1.39 yr, 56% girls) with OW/OB were randomized to either a 20-wk exercise intervention [exercise group (EG); <i>n</i> = 10; 4 boys/6 girls] or to usual lifestyle [control group (CG); <i>n</i> = 13; 6 boys/7 girls]. Whole blood genome-wide methylome (CpG sites) analysis using Infinium Methylation EPIC array and transcriptome analysis using RNA-seq (STRT2 protocol) were performed. Exercise-induced modifications in DNA methylation at 485 and 386 CpGs sites in boys and girls, respectively. These CpG sites are mapped to loci enriched in distinct gene pathways related to metabolic diseases, fatty acid metabolism, and immune function. In boys, changes in the DNA methylation of 87 CpG sites (18% of the 485 CpGs sites altered by exercise) were associated with changes in the gene expression levels of 51 genes also regulated by exercise. Among girls, changes in DNA methylation at 46 CpG sites (12% of the initial 386 significant CpGs) were associated with changes in the expression levels of 30 exercise-affected genes. Genes affected by exercise that were associated with DNA methylation are related to obesity, metabolic syndrome, and inflammation. Multiomics analysis of whole blood samples from children with OW/OB suggests that gene expression response to exercise may be modulated by DNA methylation and involve gene pathways related to metabolism and immune functions.<b>NEW & NOTEWORTHY</b> This study pioneers the exploration into the effects of exercise on whole blood genome-wide DNA methylation patterns and its association with changes in transcriptome profiles in children with overweight/obesity. Exercise potentially impacts molecular pathways involved in metabolism and immune functions in children with overweight/obesity (sex-specific responses) through the modification of epigenetic and transcriptomic profiles. Our preliminary results provide initial steps to understand better the molecular mechanisms underlying cardiometabolic benefits of exercise in children with overweight/obesity.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":\" \",\"pages\":\"91-102\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00059.2024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00059.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了20周的运动干预对超重/肥胖(OW/OB)男孩和女孩全血基因组DNA甲基化特征的影响及其与运动引起的基因表达谱变化的关联。23名患有OW/OB的儿童(10.05±1.39岁,56%为女孩)被随机分为20周运动干预组(运动组[EG];n = 10;4名男孩/ 6名女孩),或恢复正常生活方式(对照组[CG] (n=13;6个男孩/ 7个女孩)。使用Infinium Methylation EPIC阵列进行全血全基因组甲基组(CpG位点)分析,使用RNA-seq (STRT2协议)进行转录组分析。运动分别诱导男孩和女孩的485和386个CpGs位点的DNA甲基化改变。这些CpG位点定位于与代谢性疾病、脂肪酸代谢和免疫功能相关的不同基因通路中富集的位点。在男孩中,87个CpG位点的DNA甲基化变化(485个CpG位点中有18%因运动而改变)与51个基因表达水平的变化相关,这些基因也受运动调节。在女孩中,46个CpG位点的DNA甲基化变化(占最初386个重要CpG的12%)与30个运动影响基因表达水平的变化有关。受运动影响的与DNA甲基化相关的基因与肥胖、代谢综合征和炎症有关。对OW/OB儿童全血样本的多组学分析表明,基因表达对运动的反应可能受到DNA甲基化的调节,并涉及与代谢和免疫功能相关的基因途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated analysis of methylome and transcriptome responses to exercise training in children with overweight/obesity.

We examined the effects of a 20-wk exercise intervention on whole blood genome-wide DNA methylation signature and its association with the exercise-induced changes in gene expression profiles in boys and girls with overweight/obesity (OW/OB). Twenty-three children (10.05 ± 1.39 yr, 56% girls) with OW/OB were randomized to either a 20-wk exercise intervention [exercise group (EG); n = 10; 4 boys/6 girls] or to usual lifestyle [control group (CG); n = 13; 6 boys/7 girls]. Whole blood genome-wide methylome (CpG sites) analysis using Infinium Methylation EPIC array and transcriptome analysis using RNA-seq (STRT2 protocol) were performed. Exercise-induced modifications in DNA methylation at 485 and 386 CpGs sites in boys and girls, respectively. These CpG sites are mapped to loci enriched in distinct gene pathways related to metabolic diseases, fatty acid metabolism, and immune function. In boys, changes in the DNA methylation of 87 CpG sites (18% of the 485 CpGs sites altered by exercise) were associated with changes in the gene expression levels of 51 genes also regulated by exercise. Among girls, changes in DNA methylation at 46 CpG sites (12% of the initial 386 significant CpGs) were associated with changes in the expression levels of 30 exercise-affected genes. Genes affected by exercise that were associated with DNA methylation are related to obesity, metabolic syndrome, and inflammation. Multiomics analysis of whole blood samples from children with OW/OB suggests that gene expression response to exercise may be modulated by DNA methylation and involve gene pathways related to metabolism and immune functions.NEW & NOTEWORTHY This study pioneers the exploration into the effects of exercise on whole blood genome-wide DNA methylation patterns and its association with changes in transcriptome profiles in children with overweight/obesity. Exercise potentially impacts molecular pathways involved in metabolism and immune functions in children with overweight/obesity (sex-specific responses) through the modification of epigenetic and transcriptomic profiles. Our preliminary results provide initial steps to understand better the molecular mechanisms underlying cardiometabolic benefits of exercise in children with overweight/obesity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
期刊最新文献
Alternative splicing of CADM1 is associated with endothelial progenitor cell dysfunction in preeclampsia. Vacuole Membrane Protein 1 and Acute Response to Renal Ischemia and Ischemia/Reperfusion. Fluxomics Combined with Shotgun Proteomics Reveals a Differential Response of Bovine Kidney Cells to Extracellular Palmitic and α-Linolenic Acid. Drinking pattern and sex modulate the impact of ethanol consumption on the mouse gut microbiome. Relationship between Guillain-Barré syndrome and cardiovascular disease: a bidirectional Mendelian randomization study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1