C-C基序趋化因子配体5通过招募树突状细胞激活效应T辅助细胞参与氡暴露诱导的肺损伤。

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY Toxicology Pub Date : 2024-12-31 DOI:10.1016/j.tox.2024.154044
Liping Ma, Yilong Wang, Junwang Guo, Xuewen Zhang, Shuang Xing, Benbo Liu, Guo Chen, Xu Wang, Jiyao Hu, Ge Li, Gencheng Han, Maoxiang Zhu
{"title":"C-C基序趋化因子配体5通过招募树突状细胞激活效应T辅助细胞参与氡暴露诱导的肺损伤。","authors":"Liping Ma, Yilong Wang, Junwang Guo, Xuewen Zhang, Shuang Xing, Benbo Liu, Guo Chen, Xu Wang, Jiyao Hu, Ge Li, Gencheng Han, Maoxiang Zhu","doi":"10.1016/j.tox.2024.154044","DOIUrl":null,"url":null,"abstract":"<p><p>Radon (<sup>222</sup>Rn) is a naturally occurring radioactive gas, ionizing radiation emitted by the radon induces oxidative stress and the up-regulation of inflammatory proteins, which may cause lung damage or cancer. However, the underlying pathogenesis remains to be determined. Effector T helper cells are key in mediating the host's protection and immune homeostasis. In this study we revealed that, accompanied by the activation of effector T helper cells, there is a significant increase in C-C motif chemokine ligand 5 (Ccl5) in the lung of mice after cumulative inhalation of radon at 3, 9, 21, 45, 90, and 180 working level months (WLM). In vitro experiments showed that Ccl5 attracts DC migration and promotes the activation of effector T helper cells in the Ccl5-DC and T cells co-culture model. Of particular interest, Ccl5 neutralization in vivo inhibited the migration of DC cells and the subsequent activation of effector T helper cells, which finally protected mice from radon-induced lung damage and inflammatory response. Ultimately, transcriptome sequencing and western blot analysis showed that Ccl5 activates the CCR5/PI3K/AKT/Nr4a1 pathway to increase the secretion of IL-12 and IFN-γ by DC cells, which then promotes the activation of effector T helper cells. Overall, these results indicate that Ccl5 significantly contributes to the progression of radon-induced lung damage by modulating DC to activate effector T helper cells.</p>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":" ","pages":"154044"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C-C motif chemokine ligand 5 contributes to radon exposure-induced lung injury by recruiting dendritic cells to activate effector T helper cells.\",\"authors\":\"Liping Ma, Yilong Wang, Junwang Guo, Xuewen Zhang, Shuang Xing, Benbo Liu, Guo Chen, Xu Wang, Jiyao Hu, Ge Li, Gencheng Han, Maoxiang Zhu\",\"doi\":\"10.1016/j.tox.2024.154044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radon (<sup>222</sup>Rn) is a naturally occurring radioactive gas, ionizing radiation emitted by the radon induces oxidative stress and the up-regulation of inflammatory proteins, which may cause lung damage or cancer. However, the underlying pathogenesis remains to be determined. Effector T helper cells are key in mediating the host's protection and immune homeostasis. In this study we revealed that, accompanied by the activation of effector T helper cells, there is a significant increase in C-C motif chemokine ligand 5 (Ccl5) in the lung of mice after cumulative inhalation of radon at 3, 9, 21, 45, 90, and 180 working level months (WLM). In vitro experiments showed that Ccl5 attracts DC migration and promotes the activation of effector T helper cells in the Ccl5-DC and T cells co-culture model. Of particular interest, Ccl5 neutralization in vivo inhibited the migration of DC cells and the subsequent activation of effector T helper cells, which finally protected mice from radon-induced lung damage and inflammatory response. Ultimately, transcriptome sequencing and western blot analysis showed that Ccl5 activates the CCR5/PI3K/AKT/Nr4a1 pathway to increase the secretion of IL-12 and IFN-γ by DC cells, which then promotes the activation of effector T helper cells. Overall, these results indicate that Ccl5 significantly contributes to the progression of radon-induced lung damage by modulating DC to activate effector T helper cells.</p>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":\" \",\"pages\":\"154044\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tox.2024.154044\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tox.2024.154044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

氡(222Rn)是一种天然存在的放射性气体,氡释放的电离辐射可诱导氧化应激和炎症蛋白上调,从而可能导致肺损伤或癌症。然而,潜在的发病机制仍有待确定。效应T辅助细胞是介导宿主保护和免疫稳态的关键。在这项研究中,我们发现,在累积吸入氡3、9、21、45、90和180个工作水平月(WLM)后,伴随着效应T辅助细胞的激活,小鼠肺中C-C基序趋化因子配体5 (Ccl5)显著增加。体外实验表明,在Ccl5-DC和T细胞共培养模型中,Ccl5吸引DC迁移,促进效应T辅助细胞的激活。特别有趣的是,体内Ccl5中和抑制DC细胞的迁移和随后的效应T辅助细胞的激活,最终保护小鼠免受氡诱导的肺损伤和炎症反应。最终,转录组测序和western blot分析显示,Ccl5激活CCR5/PI3K/AKT/Nr4a1通路,增加DC细胞分泌IL-12和IFN-γ,进而促进T辅助效应细胞的激活。总体而言,这些结果表明Ccl5通过调节DC激活效应T辅助细胞,显著促进氡诱导肺损伤的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C-C motif chemokine ligand 5 contributes to radon exposure-induced lung injury by recruiting dendritic cells to activate effector T helper cells.

Radon (222Rn) is a naturally occurring radioactive gas, ionizing radiation emitted by the radon induces oxidative stress and the up-regulation of inflammatory proteins, which may cause lung damage or cancer. However, the underlying pathogenesis remains to be determined. Effector T helper cells are key in mediating the host's protection and immune homeostasis. In this study we revealed that, accompanied by the activation of effector T helper cells, there is a significant increase in C-C motif chemokine ligand 5 (Ccl5) in the lung of mice after cumulative inhalation of radon at 3, 9, 21, 45, 90, and 180 working level months (WLM). In vitro experiments showed that Ccl5 attracts DC migration and promotes the activation of effector T helper cells in the Ccl5-DC and T cells co-culture model. Of particular interest, Ccl5 neutralization in vivo inhibited the migration of DC cells and the subsequent activation of effector T helper cells, which finally protected mice from radon-induced lung damage and inflammatory response. Ultimately, transcriptome sequencing and western blot analysis showed that Ccl5 activates the CCR5/PI3K/AKT/Nr4a1 pathway to increase the secretion of IL-12 and IFN-γ by DC cells, which then promotes the activation of effector T helper cells. Overall, these results indicate that Ccl5 significantly contributes to the progression of radon-induced lung damage by modulating DC to activate effector T helper cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
期刊最新文献
Chronic environmental exposure to polystyrene microplastics increases the risk of nonalcoholic fatty liver disease. Assessing the impact of TiO2 nanomaterials on intestinal cells: new evidence for epithelial translocation and potential pro-inflammatory effects. InterDIA: Interpretable Prediction of Drug-induced Autoimmunity through Ensemble Machine Learning Approaches. A preliminary study of combined toxicity and underlying mechanisms of imidacloprid and cadmium coexposure using a multiomics integration approach. Benzene-induced hematotoxicity enhances the self-renewal ability of HSPCs in Mll-Af9 mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1