百草枯致小鼠肺损伤分子机制的蛋白质组学研究。

IF 5.8 2区 医学 Q1 Medicine Respiratory Research Pub Date : 2025-01-02 DOI:10.1186/s12931-024-03072-x
Yu Qing Zhou, Jin Jin Peng, Li Ping Shan, Wei Liu
{"title":"百草枯致小鼠肺损伤分子机制的蛋白质组学研究。","authors":"Yu Qing Zhou, Jin Jin Peng, Li Ping Shan, Wei Liu","doi":"10.1186/s12931-024-03072-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We sought to explore the molecular mechanisms underpinning acute lung injury (ALI) caused by poisoning with paraquat (PQ).</p><p><strong>Methods: </strong>Selection mice were intraperitoneally injected with PQ at 40 mg/kg, whereas controls were injected with sterile saline. On days 2, 7, and 14 after administration, mice were anesthetized and sacrificed, and lung tissue was removed. Lung pathological changes were observed with conventional staining techniques. Lung tissue components were assessed with tandem mass spectrometry tag technology, and differentially expressed proteins (DEPs) were bioinformatically analyzed and investigated with parallel reaction monitoring.</p><p><strong>Results: </strong>The expression of 91, 160, and 78 proteins was significantly altered at days 2, 7, and 14, respectively. Gene Ontology analyses revealed that the DEPs in the PQ-2d and PQ-7d groups were involved primarily in humoral immunity and coagulation-related reactions, whereas those in the PQ-14d group were implicated primarily in chemotactic and regulatory responses. Kyoto Encyclopedia of Genes and Genomes analyses indicated that complement and coagulation cascades were key pathways in the PQ-2d and PQ-7d groups, whereas xenobiotic metabolism by cytochrome P450 was a key pathway in the PQ-14d group. Nine proteins at PQ-2d and eight proteins at PQ-7d were validated through parallel reaction monitoring (PRM).</p><p><strong>Conclusions: </strong>PQ-induced ALI depends on over-activation of immune responses by damaged alveolar/endothelial cells, and the complement/coagulation cascade pathway plays a key role during this process. The proteins identified herein might provide new therapeutic targets or biomarkers for PQ poisoning.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"26 1","pages":"1"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697879/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proteomic characterization of molecular mechanisms of paraquat-induced lung injury in a mouse model.\",\"authors\":\"Yu Qing Zhou, Jin Jin Peng, Li Ping Shan, Wei Liu\",\"doi\":\"10.1186/s12931-024-03072-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We sought to explore the molecular mechanisms underpinning acute lung injury (ALI) caused by poisoning with paraquat (PQ).</p><p><strong>Methods: </strong>Selection mice were intraperitoneally injected with PQ at 40 mg/kg, whereas controls were injected with sterile saline. On days 2, 7, and 14 after administration, mice were anesthetized and sacrificed, and lung tissue was removed. Lung pathological changes were observed with conventional staining techniques. Lung tissue components were assessed with tandem mass spectrometry tag technology, and differentially expressed proteins (DEPs) were bioinformatically analyzed and investigated with parallel reaction monitoring.</p><p><strong>Results: </strong>The expression of 91, 160, and 78 proteins was significantly altered at days 2, 7, and 14, respectively. Gene Ontology analyses revealed that the DEPs in the PQ-2d and PQ-7d groups were involved primarily in humoral immunity and coagulation-related reactions, whereas those in the PQ-14d group were implicated primarily in chemotactic and regulatory responses. Kyoto Encyclopedia of Genes and Genomes analyses indicated that complement and coagulation cascades were key pathways in the PQ-2d and PQ-7d groups, whereas xenobiotic metabolism by cytochrome P450 was a key pathway in the PQ-14d group. Nine proteins at PQ-2d and eight proteins at PQ-7d were validated through parallel reaction monitoring (PRM).</p><p><strong>Conclusions: </strong>PQ-induced ALI depends on over-activation of immune responses by damaged alveolar/endothelial cells, and the complement/coagulation cascade pathway plays a key role during this process. The proteins identified herein might provide new therapeutic targets or biomarkers for PQ poisoning.</p>\",\"PeriodicalId\":49131,\"journal\":{\"name\":\"Respiratory Research\",\"volume\":\"26 1\",\"pages\":\"1\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12931-024-03072-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-024-03072-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

背景:我们试图探索百草枯(PQ)中毒引起急性肺损伤(ALI)的分子机制。方法:选择小鼠按40 mg/kg的剂量腹腔注射PQ,对照组注射无菌生理盐水。给药后第2、7、14天,麻醉处死小鼠,切除肺组织。常规染色法观察肺组织病理改变。采用串联质谱标记技术评估肺组织成分,采用平行反应监测对差异表达蛋白(DEPs)进行生物信息学分析和研究。结果:91、160和78个蛋白的表达分别在第2、7和14天发生了显著变化。基因本体分析显示,PQ-2d和PQ-7d组的DEPs主要参与体液免疫和凝血相关反应,而PQ-14d组的DEPs主要参与趋化和调节反应。京都基因和基因组百科分析表明,补体和凝血级联是PQ-2d和PQ-7d组的关键途径,而细胞色素P450的外源代谢是PQ-14d组的关键途径。通过平行反应监测(PRM)验证了PQ-2d和PQ-7d上的9个蛋白和8个蛋白。结论:pq诱导的ALI依赖于受损肺泡/内皮细胞过度激活免疫反应,补体/凝血级联通路在此过程中起关键作用。本文所鉴定的蛋白可能为PQ中毒提供新的治疗靶点或生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteomic characterization of molecular mechanisms of paraquat-induced lung injury in a mouse model.

Background: We sought to explore the molecular mechanisms underpinning acute lung injury (ALI) caused by poisoning with paraquat (PQ).

Methods: Selection mice were intraperitoneally injected with PQ at 40 mg/kg, whereas controls were injected with sterile saline. On days 2, 7, and 14 after administration, mice were anesthetized and sacrificed, and lung tissue was removed. Lung pathological changes were observed with conventional staining techniques. Lung tissue components were assessed with tandem mass spectrometry tag technology, and differentially expressed proteins (DEPs) were bioinformatically analyzed and investigated with parallel reaction monitoring.

Results: The expression of 91, 160, and 78 proteins was significantly altered at days 2, 7, and 14, respectively. Gene Ontology analyses revealed that the DEPs in the PQ-2d and PQ-7d groups were involved primarily in humoral immunity and coagulation-related reactions, whereas those in the PQ-14d group were implicated primarily in chemotactic and regulatory responses. Kyoto Encyclopedia of Genes and Genomes analyses indicated that complement and coagulation cascades were key pathways in the PQ-2d and PQ-7d groups, whereas xenobiotic metabolism by cytochrome P450 was a key pathway in the PQ-14d group. Nine proteins at PQ-2d and eight proteins at PQ-7d were validated through parallel reaction monitoring (PRM).

Conclusions: PQ-induced ALI depends on over-activation of immune responses by damaged alveolar/endothelial cells, and the complement/coagulation cascade pathway plays a key role during this process. The proteins identified herein might provide new therapeutic targets or biomarkers for PQ poisoning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Respiratory Research
Respiratory Research RESPIRATORY SYSTEM-
CiteScore
9.70
自引率
1.70%
发文量
314
审稿时长
4-8 weeks
期刊介绍: Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases. As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion. Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.
期刊最新文献
Assessment of the prevalence of respiratory pathogens and the level of immunity to respiratory viruses in soldiers and civilian military employees in Poland. Impacts of vaping and marijuana use on airway health as determined by exhaled breath condensate (EBC). Long non-coding RNA PRKG1-AS1 promotes cell proliferation and migration in lung adenocarcinoma. Mechanistic insights into the role of EGLN3 in pulmonary vascular remodeling and endothelial dysfunction. Stellate ganglia block reduces airway hyperresponsiveness with modulates the IKK/NF-κB/IL-4/IL-5/IL-13 pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1