Meng-Ying Li , Wei Wang , Hai-Hong Yin , Yinglong Chen , Muhammad Ashraf , Hong-Yan Tao , Shi-Sheng Li , Wen-Ying Wang , Chang-Lang Yang , Yun-Li Xiao , Li Zhu , You-Cai Xiong
{"title":"丛枝菌根真菌在提高旱地土壤有机碳储量和稳定性中的功能作用","authors":"Meng-Ying Li , Wei Wang , Hai-Hong Yin , Yinglong Chen , Muhammad Ashraf , Hong-Yan Tao , Shi-Sheng Li , Wen-Ying Wang , Chang-Lang Yang , Yun-Li Xiao , Li Zhu , You-Cai Xiong","doi":"10.1016/j.still.2024.106443","DOIUrl":null,"url":null,"abstract":"<div><div>Arbuscular mycorrhizal fungi (AMF) are known to influence soil organic carbon (SOC) stock, but the mechanisms by which they affect SOC stability in the rhizosphere remains poorly understood. To address this gap, a 7-year field observation was conducted in a rainfed dryland maize field, with AMF inoculation, AMF exclusion (only benomyl treatment), and the control (no AMF and no benomyl). AMF introduction increased soil occluded particulate organic carbon (oPOC) and mineral-associated organic carbon (MAOC) contents by 15.6 % and 7.1 %, respectively, compared to the control. However, no significant changes were observed in free particulate organic carbon (fPOC) levels. As expected, AMF exclusion led to a general reduction in SOC content. Analyses of <em>in situ</em> <sup>13</sup>C labeling showed that AMF inoculation evidently promoted the retention of <sup>13</sup>C in oPOC (13.6 %) and MAOC (5.4 %), thereby enhancing SOC stability. High-throughput sequencing results revealed that AMF inoculation led to significant increases in the diversity and abundance of rhizosphere fungal community, with higher co-occurrence network complexity. Meanwhile, the diversity and abundance of rhizosphere bacterial community were substantially reduced (<em>p</em> < 0.05). Importantly, long-term AMF inoculation was observed to weaken soil N stocks, and inhibit microbial hydrolase secretion for C sources. The findings suggest that AMF inoculation can conserve and stabilize SOC by enhancing fungal community proliferation, while reducing microbial extracellular enzyme activity through soil N depletion. Therefore, AMF can be considered rhizosphere carbon engineer that boost persistent carbon sink in drylands via selectively affecting SOC components. The findings provide new insights into global nature-based carbon neutrality strategies.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106443"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The functional role of arbuscular mycorrhizal fungi in enhancing soil organic carbon stocks and stability in dryland\",\"authors\":\"Meng-Ying Li , Wei Wang , Hai-Hong Yin , Yinglong Chen , Muhammad Ashraf , Hong-Yan Tao , Shi-Sheng Li , Wen-Ying Wang , Chang-Lang Yang , Yun-Li Xiao , Li Zhu , You-Cai Xiong\",\"doi\":\"10.1016/j.still.2024.106443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arbuscular mycorrhizal fungi (AMF) are known to influence soil organic carbon (SOC) stock, but the mechanisms by which they affect SOC stability in the rhizosphere remains poorly understood. To address this gap, a 7-year field observation was conducted in a rainfed dryland maize field, with AMF inoculation, AMF exclusion (only benomyl treatment), and the control (no AMF and no benomyl). AMF introduction increased soil occluded particulate organic carbon (oPOC) and mineral-associated organic carbon (MAOC) contents by 15.6 % and 7.1 %, respectively, compared to the control. However, no significant changes were observed in free particulate organic carbon (fPOC) levels. As expected, AMF exclusion led to a general reduction in SOC content. Analyses of <em>in situ</em> <sup>13</sup>C labeling showed that AMF inoculation evidently promoted the retention of <sup>13</sup>C in oPOC (13.6 %) and MAOC (5.4 %), thereby enhancing SOC stability. High-throughput sequencing results revealed that AMF inoculation led to significant increases in the diversity and abundance of rhizosphere fungal community, with higher co-occurrence network complexity. Meanwhile, the diversity and abundance of rhizosphere bacterial community were substantially reduced (<em>p</em> < 0.05). Importantly, long-term AMF inoculation was observed to weaken soil N stocks, and inhibit microbial hydrolase secretion for C sources. The findings suggest that AMF inoculation can conserve and stabilize SOC by enhancing fungal community proliferation, while reducing microbial extracellular enzyme activity through soil N depletion. Therefore, AMF can be considered rhizosphere carbon engineer that boost persistent carbon sink in drylands via selectively affecting SOC components. The findings provide new insights into global nature-based carbon neutrality strategies.</div></div>\",\"PeriodicalId\":49503,\"journal\":{\"name\":\"Soil & Tillage Research\",\"volume\":\"248 \",\"pages\":\"Article 106443\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Tillage Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167198724004446\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724004446","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
The functional role of arbuscular mycorrhizal fungi in enhancing soil organic carbon stocks and stability in dryland
Arbuscular mycorrhizal fungi (AMF) are known to influence soil organic carbon (SOC) stock, but the mechanisms by which they affect SOC stability in the rhizosphere remains poorly understood. To address this gap, a 7-year field observation was conducted in a rainfed dryland maize field, with AMF inoculation, AMF exclusion (only benomyl treatment), and the control (no AMF and no benomyl). AMF introduction increased soil occluded particulate organic carbon (oPOC) and mineral-associated organic carbon (MAOC) contents by 15.6 % and 7.1 %, respectively, compared to the control. However, no significant changes were observed in free particulate organic carbon (fPOC) levels. As expected, AMF exclusion led to a general reduction in SOC content. Analyses of in situ13C labeling showed that AMF inoculation evidently promoted the retention of 13C in oPOC (13.6 %) and MAOC (5.4 %), thereby enhancing SOC stability. High-throughput sequencing results revealed that AMF inoculation led to significant increases in the diversity and abundance of rhizosphere fungal community, with higher co-occurrence network complexity. Meanwhile, the diversity and abundance of rhizosphere bacterial community were substantially reduced (p < 0.05). Importantly, long-term AMF inoculation was observed to weaken soil N stocks, and inhibit microbial hydrolase secretion for C sources. The findings suggest that AMF inoculation can conserve and stabilize SOC by enhancing fungal community proliferation, while reducing microbial extracellular enzyme activity through soil N depletion. Therefore, AMF can be considered rhizosphere carbon engineer that boost persistent carbon sink in drylands via selectively affecting SOC components. The findings provide new insights into global nature-based carbon neutrality strategies.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.