SENP3抑制抑制肝细胞癌的进展,提高抗pd -1免疫治疗的疗效

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Death and Differentiation Pub Date : 2025-01-04 DOI:10.1038/s41418-024-01437-9
Peng Wang, Jiannan Qiu, Yuan Fang, Songmao Li, Kua Liu, Yin Cao, Guang Zhang, Zhongxia Wang, Xiaosong Gu, Junhua Wu, Chunping Jiang
{"title":"SENP3抑制抑制肝细胞癌的进展,提高抗pd -1免疫治疗的疗效","authors":"Peng Wang, Jiannan Qiu, Yuan Fang, Songmao Li, Kua Liu, Yin Cao, Guang Zhang, Zhongxia Wang, Xiaosong Gu, Junhua Wu, Chunping Jiang","doi":"10.1038/s41418-024-01437-9","DOIUrl":null,"url":null,"abstract":"<p>The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis. Multiple functional experiments demonstrated that SENP3 promotes the malignant phenotype of HCC cells. Mechanistically, SENP3 deSUMOylates RACK1 and subsequently increases its stability and interaction with PKCβII, thereby promoting eIF4E phosphorylation and translation of oncogenes, including Bcl2, Snail and Cyclin D1. Additionally, tumor-intrinsic SENP3 promotes the infiltration of tumor-associated macrophages (TAMs) while reducing cytotoxic T cells to facilitate immune evasion. Mechanistically, SENP3 promotes translation of CCL20 via the RACK1 /eIF4E axis. Liver-specific knockdown of SENP3 significantly inhibits liver tumorigenesis in a chemically induced HCC model. SENP3 inhibition enhances the therapeutic efficacy of PD-1 blockade in an HCC mouse model. Collectively, SENP3 plays cell-intrinsic and cell-extrinsic roles in HCC progression and immune evasion by modulating oncogene and cytokine translation. Targeting SENP3 is a novel therapeutic target for boosting HCC responsiveness to immunotherapy.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"17 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SENP3 inhibition suppresses hepatocellular carcinoma progression and improves the efficacy of anti-PD-1 immunotherapy\",\"authors\":\"Peng Wang, Jiannan Qiu, Yuan Fang, Songmao Li, Kua Liu, Yin Cao, Guang Zhang, Zhongxia Wang, Xiaosong Gu, Junhua Wu, Chunping Jiang\",\"doi\":\"10.1038/s41418-024-01437-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis. Multiple functional experiments demonstrated that SENP3 promotes the malignant phenotype of HCC cells. Mechanistically, SENP3 deSUMOylates RACK1 and subsequently increases its stability and interaction with PKCβII, thereby promoting eIF4E phosphorylation and translation of oncogenes, including Bcl2, Snail and Cyclin D1. Additionally, tumor-intrinsic SENP3 promotes the infiltration of tumor-associated macrophages (TAMs) while reducing cytotoxic T cells to facilitate immune evasion. Mechanistically, SENP3 promotes translation of CCL20 via the RACK1 /eIF4E axis. Liver-specific knockdown of SENP3 significantly inhibits liver tumorigenesis in a chemically induced HCC model. SENP3 inhibition enhances the therapeutic efficacy of PD-1 blockade in an HCC mouse model. Collectively, SENP3 plays cell-intrinsic and cell-extrinsic roles in HCC progression and immune evasion by modulating oncogene and cytokine translation. Targeting SENP3 is a novel therapeutic target for boosting HCC responsiveness to immunotherapy.</p>\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41418-024-01437-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-024-01437-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

SUMOylation在肿瘤发生中的重要性越来越受到重视,针对这一途径的治疗药物的研究也取得了进展。然而,SUMOylation在肝细胞癌(HCC)进展中的潜在功能及其潜在的分子机制尚不清楚。在这里,我们发现sumo特异性肽酶3 (SENP3)在HCC组织中上调,并与不良预后相关。多项功能实验表明,SENP3促进HCC细胞的恶性表型。从机制上讲,SENP3使RACK1脱umoylate,随后增加其稳定性和与PKCβII的相互作用,从而促进eIF4E磷酸化和癌基因的翻译,包括Bcl2、Snail和Cyclin D1。此外,肿瘤固有的SENP3促进肿瘤相关巨噬细胞(tam)的浸润,同时减少细胞毒性T细胞,促进免疫逃避。机制上,SENP3通过RACK1 /eIF4E轴促进CCL20的翻译。在化学诱导的HCC模型中,肝脏特异性敲低SENP3可显著抑制肝脏肿瘤发生。在HCC小鼠模型中,SENP3抑制可增强PD-1阻断的治疗效果。总的来说,SENP3通过调节癌基因和细胞因子的翻译,在HCC的进展和免疫逃避中起着细胞内和细胞外的作用。靶向SENP3是提高肝癌免疫治疗反应性的一种新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SENP3 inhibition suppresses hepatocellular carcinoma progression and improves the efficacy of anti-PD-1 immunotherapy

The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis. Multiple functional experiments demonstrated that SENP3 promotes the malignant phenotype of HCC cells. Mechanistically, SENP3 deSUMOylates RACK1 and subsequently increases its stability and interaction with PKCβII, thereby promoting eIF4E phosphorylation and translation of oncogenes, including Bcl2, Snail and Cyclin D1. Additionally, tumor-intrinsic SENP3 promotes the infiltration of tumor-associated macrophages (TAMs) while reducing cytotoxic T cells to facilitate immune evasion. Mechanistically, SENP3 promotes translation of CCL20 via the RACK1 /eIF4E axis. Liver-specific knockdown of SENP3 significantly inhibits liver tumorigenesis in a chemically induced HCC model. SENP3 inhibition enhances the therapeutic efficacy of PD-1 blockade in an HCC mouse model. Collectively, SENP3 plays cell-intrinsic and cell-extrinsic roles in HCC progression and immune evasion by modulating oncogene and cytokine translation. Targeting SENP3 is a novel therapeutic target for boosting HCC responsiveness to immunotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
Hepatic factor MANF drives hepatocytes reprogramming by detaining cytosolic CK19 in intrahepatic cholangiocarcinoma CSTF2-impeded innate αβ T cell infiltration and activation exacerbate immune evasion of pancreatic cancer Distinct developmental outcomes in DNA repair-deficient FANCC c.67delG mutant and FANCC−/− Mice The LINC01315-encoded small protein YAPer-ORF competes with PRP4k to hijack YAP signaling to aberrantly promote cell growth STING directly interacts with PAR to promote apoptosis upon acute ionizing radiation-mediated DNA damage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1