减轻牡蛎幼虫的氧化应激:姜黄素促进氧化还原平衡、抗氧化能力、发育和对防污化合物的抗性

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Aquatic Toxicology Pub Date : 2025-02-01 DOI:10.1016/j.aquatox.2024.107231
Heloísa Bárbara Gabe , Fernando Ramos Queiroga , Karine Amabile Taruhn , Rafael Trevisan
{"title":"减轻牡蛎幼虫的氧化应激:姜黄素促进氧化还原平衡、抗氧化能力、发育和对防污化合物的抗性","authors":"Heloísa Bárbara Gabe ,&nbsp;Fernando Ramos Queiroga ,&nbsp;Karine Amabile Taruhn ,&nbsp;Rafael Trevisan","doi":"10.1016/j.aquatox.2024.107231","DOIUrl":null,"url":null,"abstract":"<div><div>Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of <em>Crassostrea gigas</em> oysters with CUR would improve their antioxidant capacity, development, and resilience to stress. Embryos were exposed to CUR ranging from 0.03 to 30 µM for 24 h. Their development was assessed, along with measurements of glutathione levels, glutathione S-transferase activity, antioxidant capacity, production of reactive oxygen species (ROS), metabolic activity, and resistance to organic hydroperoxide and the antifouling compound dichlorooctylisothiazolinone (DCOIT). Low curcumin concentrations (up to 1 μM) activated the <span>d</span>-larvae antioxidant system, with a significant threefold increase in glutathione levels and a 50 % decrease in ROS production. This enhancement in antioxidant defense improved the ability of larvae to detoxify organic hydroperoxide. It also resulted in larger larval size and increased survival rates, whether under normal conditions or exposure to peroxide or DCOIT. CUR shows great promise in supporting larval development, but high concentrations were toxic (EC<sub>50</sub> = 2.90 μM), probably due to excessive antioxidant activation. Our results indicate that the antioxidant system may play a role in controlling bivalve early development. Understanding how antioxidants influence redox balance and gene expression during early life can enhance our knowledge of stress response mechanisms in marine organisms, offering insights into how they cope with pollutants and environmental challenges. Integrating CUR and antioxidant defense pathway approaches into aquaculture practices could boost productivity and sustainability in oyster aquaculture.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107231"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating oxidative stress in oyster larvae: Curcumin promotes enhanced redox balance, antioxidant capacity, development, and resistance to antifouling compounds\",\"authors\":\"Heloísa Bárbara Gabe ,&nbsp;Fernando Ramos Queiroga ,&nbsp;Karine Amabile Taruhn ,&nbsp;Rafael Trevisan\",\"doi\":\"10.1016/j.aquatox.2024.107231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of <em>Crassostrea gigas</em> oysters with CUR would improve their antioxidant capacity, development, and resilience to stress. Embryos were exposed to CUR ranging from 0.03 to 30 µM for 24 h. Their development was assessed, along with measurements of glutathione levels, glutathione S-transferase activity, antioxidant capacity, production of reactive oxygen species (ROS), metabolic activity, and resistance to organic hydroperoxide and the antifouling compound dichlorooctylisothiazolinone (DCOIT). Low curcumin concentrations (up to 1 μM) activated the <span>d</span>-larvae antioxidant system, with a significant threefold increase in glutathione levels and a 50 % decrease in ROS production. This enhancement in antioxidant defense improved the ability of larvae to detoxify organic hydroperoxide. It also resulted in larger larval size and increased survival rates, whether under normal conditions or exposure to peroxide or DCOIT. CUR shows great promise in supporting larval development, but high concentrations were toxic (EC<sub>50</sub> = 2.90 μM), probably due to excessive antioxidant activation. Our results indicate that the antioxidant system may play a role in controlling bivalve early development. Understanding how antioxidants influence redox balance and gene expression during early life can enhance our knowledge of stress response mechanisms in marine organisms, offering insights into how they cope with pollutants and environmental challenges. Integrating CUR and antioxidant defense pathway approaches into aquaculture practices could boost productivity and sustainability in oyster aquaculture.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"279 \",\"pages\":\"Article 107231\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X24004004\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24004004","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

姜黄素(Curcumin, CUR)是一种刺激抗氧化基因表达的天然化合物。这一特点已被用于促进水产养殖环境中的动物健康和生产。我们假设在长牡蛎胚胎中添加CUR可以提高它们的抗氧化能力、发育和抗应激能力。胚胎暴露在0.03至30µM的低温环境中24小时。评估胚胎的发育情况,同时测量谷胱甘肽水平、谷胱甘肽s -转移酶活性、抗氧化能力、活性氧(ROS)的产生、代谢活性以及对有机过氧化氢和抗污染化合物二氯基基异噻唑啉酮(DCOIT)的抗性。低姜黄素浓度(高达1 μM)激活了d-幼虫的抗氧化系统,使谷胱甘肽水平显著增加三倍,ROS生成减少50%。这种抗氧化防御的增强提高了幼虫对有机过氧化氢解毒的能力。它还导致更大的幼虫尺寸和提高存活率,无论是在正常条件下或暴露于过氧化氢或DCOIT。CUR在支持幼虫发育方面有很大的前景,但高浓度可能是有毒的(EC50 = 2.90 μM),可能是由于过度的抗氧化激活。我们的结果表明,抗氧化系统可能在控制双壳类动物的早期发育中起作用。了解抗氧化剂如何影响生命早期的氧化还原平衡和基因表达,可以增强我们对海洋生物应激反应机制的认识,为它们如何应对污染物和环境挑战提供见解。将CUR和抗氧化防御途径纳入养殖实践可以提高牡蛎养殖的生产力和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigating oxidative stress in oyster larvae: Curcumin promotes enhanced redox balance, antioxidant capacity, development, and resistance to antifouling compounds
Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of Crassostrea gigas oysters with CUR would improve their antioxidant capacity, development, and resilience to stress. Embryos were exposed to CUR ranging from 0.03 to 30 µM for 24 h. Their development was assessed, along with measurements of glutathione levels, glutathione S-transferase activity, antioxidant capacity, production of reactive oxygen species (ROS), metabolic activity, and resistance to organic hydroperoxide and the antifouling compound dichlorooctylisothiazolinone (DCOIT). Low curcumin concentrations (up to 1 μM) activated the d-larvae antioxidant system, with a significant threefold increase in glutathione levels and a 50 % decrease in ROS production. This enhancement in antioxidant defense improved the ability of larvae to detoxify organic hydroperoxide. It also resulted in larger larval size and increased survival rates, whether under normal conditions or exposure to peroxide or DCOIT. CUR shows great promise in supporting larval development, but high concentrations were toxic (EC50 = 2.90 μM), probably due to excessive antioxidant activation. Our results indicate that the antioxidant system may play a role in controlling bivalve early development. Understanding how antioxidants influence redox balance and gene expression during early life can enhance our knowledge of stress response mechanisms in marine organisms, offering insights into how they cope with pollutants and environmental challenges. Integrating CUR and antioxidant defense pathway approaches into aquaculture practices could boost productivity and sustainability in oyster aquaculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
期刊最新文献
Acute cardiorespiratory effects of 6PPD-quinone on juvenile rainbow trout (Oncorhynchus mykiss) and arctic char (Salvelinus alpinus) Modelling the size distribution and bioaccumulation of gold nanoparticles under mixture exposure BIF-induced ROS-mediated cytotoxicity and genotoxicity in embryonic cell culture of Daphnia magna Antibacterials exert toxic effects on aquatic organisms by inhibiting respiration, inducing oxidative stress, mitochondrial dysfunction and autophagy Combined effect of mercury and ammonia toxicity and its mitigation through selenium nanoparticles in fish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1