甘氨酸钠和氯盐的水溶性──自滴定固体的“不常见”共离子效应。

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2025-02-03 Epub Date: 2025-01-04 DOI:10.1021/acs.molpharmaceut.4c01066
Alex Avdeef, Abu T M Serajuddin, Hari P Kandagatla
{"title":"甘氨酸钠和氯盐的水溶性──自滴定固体的“不常见”共离子效应。","authors":"Alex Avdeef, Abu T M Serajuddin, Hari P Kandagatla","doi":"10.1021/acs.molpharmaceut.4c01066","DOIUrl":null,"url":null,"abstract":"<p><p>Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques. However, what takes place below pH 3 and above pH 8 in saturated solutions has been sparsely explored and is thought to exhibit complex properties. Although the solubility measurements in the pH 0-13 range have been reported by several groups, the interlaboratory variance between the data below pH 3 and above pH 8 has been high. In a couple of cases, there appears to be no pH dependence on solubility across the wide pH range, even though the reported glycine p<i>K</i><sub>a</sub> values are 2.34 and 9.61. The solubility of the salt forms of glycine is largely uncharacterized. The solubility products of the simplest salts, glycine hydrochloride and sodium glycinate, appear not to have been published. In this study, five series of precision solubility measurements of glycine and its salts were performed at 25 °C, covering the range of pH -0.4 to 12.4, where in each case, just enough glycine was added to reach saturation. We have developed an equilibrium model to rationalize the complicated salt regions. Elemental analysis of isolated solids from saturated solutions supports the speciation model. At least three different salt forms have been indicated in acidic solutions and one salt form in alkaline solutions. Solubility products are reported here. The presence of a water-soluble cationic dimer is also proposed. Data analysis was performed with the aid of the <i>p</i>DISOL-X computer program. Activity corrections based on the Stokes-Robinson hydration theory have been implemented in saturated solutions with ionic strength in some cases exceeding 5 M. Although salt solubility is not a constant, since it depends on two independently controlled reactant concentrations, the salt solubility product is commonly expected to be a constant. However, in the glycine salt region below pH 3, our solubility measurements demonstrate that the solubility products depend on the total amount of added glycine in a saturated solution. We view this as an \"uncommon\" common-ion effect.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"895-905"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aqueous Solubility of Sodium and Chloride Salts of Glycine─\\\"Uncommon\\\" Common-Ion Effects of Self-Titrating Solids.\",\"authors\":\"Alex Avdeef, Abu T M Serajuddin, Hari P Kandagatla\",\"doi\":\"10.1021/acs.molpharmaceut.4c01066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques. However, what takes place below pH 3 and above pH 8 in saturated solutions has been sparsely explored and is thought to exhibit complex properties. Although the solubility measurements in the pH 0-13 range have been reported by several groups, the interlaboratory variance between the data below pH 3 and above pH 8 has been high. In a couple of cases, there appears to be no pH dependence on solubility across the wide pH range, even though the reported glycine p<i>K</i><sub>a</sub> values are 2.34 and 9.61. The solubility of the salt forms of glycine is largely uncharacterized. The solubility products of the simplest salts, glycine hydrochloride and sodium glycinate, appear not to have been published. In this study, five series of precision solubility measurements of glycine and its salts were performed at 25 °C, covering the range of pH -0.4 to 12.4, where in each case, just enough glycine was added to reach saturation. We have developed an equilibrium model to rationalize the complicated salt regions. Elemental analysis of isolated solids from saturated solutions supports the speciation model. At least three different salt forms have been indicated in acidic solutions and one salt form in alkaline solutions. Solubility products are reported here. The presence of a water-soluble cationic dimer is also proposed. Data analysis was performed with the aid of the <i>p</i>DISOL-X computer program. Activity corrections based on the Stokes-Robinson hydration theory have been implemented in saturated solutions with ionic strength in some cases exceeding 5 M. Although salt solubility is not a constant, since it depends on two independently controlled reactant concentrations, the salt solubility product is commonly expected to be a constant. However, in the glycine salt region below pH 3, our solubility measurements demonstrate that the solubility products depend on the total amount of added glycine in a saturated solution. We view this as an \\\"uncommon\\\" common-ion effect.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"895-905\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c01066\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01066","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然甘氨酸是最简单的氨基酸,但它的溶液和固态性质远不是直截了当的。甘氨酸的水溶性在各种应用中发挥着重要作用,包括营养,食品,生物降解塑料和药物开发。有证据表明,甘氨酸在亚饱和pH 3-8溶液中形成二聚体,正如几种技术所建议的那样。然而,在pH值低于3和高于pH值8的饱和溶液中发生的情况已经很少被探索,并且被认为表现出复杂的性质。虽然有几个小组报道了pH 0-13范围内的溶解度测量,但在pH 3以下和pH 8以上的数据之间的实验室间差异很大。在一些情况下,即使报道的甘氨酸pKa值为2.34和9.61,在广泛的pH范围内,似乎没有pH对溶解度的依赖。甘氨酸盐形式的溶解度在很大程度上是未知的。最简单的盐类甘氨酸盐酸盐和甘氨酸钠的溶解度产物似乎尚未发表。在本研究中,在25°C下,在pH -0.4到12.4的范围内,对甘氨酸及其盐进行了5个系列的精确溶解度测量,在每种情况下,加入足够的甘氨酸达到饱和。我们建立了一个平衡模型来合理化复杂的盐区。从饱和溶液中分离固体的元素分析支持物种形成模型。在酸性溶液中至少有三种不同的盐形式,在碱性溶液中有一种盐形式。溶解度产物报告在这里。还提出了水溶性阳离子二聚体的存在。通过pDISOL-X计算机程序进行数据分析。基于Stokes-Robinson水合理论的活度修正已经在饱和溶液中实现,在某些情况下离子强度超过5 m。尽管盐的溶解度不是恒定的,因为它取决于两个独立控制的反应物浓度,盐的溶解度产物通常被认为是恒定的。然而,在pH值低于3的甘氨酸盐区域,我们的溶解度测量表明,溶解度产物取决于在饱和溶液中添加的甘氨酸的总量。我们认为这是一种“不寻常的”共同效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aqueous Solubility of Sodium and Chloride Salts of Glycine─"Uncommon" Common-Ion Effects of Self-Titrating Solids.

Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques. However, what takes place below pH 3 and above pH 8 in saturated solutions has been sparsely explored and is thought to exhibit complex properties. Although the solubility measurements in the pH 0-13 range have been reported by several groups, the interlaboratory variance between the data below pH 3 and above pH 8 has been high. In a couple of cases, there appears to be no pH dependence on solubility across the wide pH range, even though the reported glycine pKa values are 2.34 and 9.61. The solubility of the salt forms of glycine is largely uncharacterized. The solubility products of the simplest salts, glycine hydrochloride and sodium glycinate, appear not to have been published. In this study, five series of precision solubility measurements of glycine and its salts were performed at 25 °C, covering the range of pH -0.4 to 12.4, where in each case, just enough glycine was added to reach saturation. We have developed an equilibrium model to rationalize the complicated salt regions. Elemental analysis of isolated solids from saturated solutions supports the speciation model. At least three different salt forms have been indicated in acidic solutions and one salt form in alkaline solutions. Solubility products are reported here. The presence of a water-soluble cationic dimer is also proposed. Data analysis was performed with the aid of the pDISOL-X computer program. Activity corrections based on the Stokes-Robinson hydration theory have been implemented in saturated solutions with ionic strength in some cases exceeding 5 M. Although salt solubility is not a constant, since it depends on two independently controlled reactant concentrations, the salt solubility product is commonly expected to be a constant. However, in the glycine salt region below pH 3, our solubility measurements demonstrate that the solubility products depend on the total amount of added glycine in a saturated solution. We view this as an "uncommon" common-ion effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Predicting Drug-Polymer Compatibility in Amorphous Solid Dispersions by MD Simulation: On the Trap of Solvation Free Energies. Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application. Comparative Study of Dimeric Fibroblast Activation Protein-Targeting Radioligands Labeled with Fluorine-18, Copper-64, and Gallium-68. Subcutaneous Administration of Therapeutic Monoclonal Antibody Drug Products Using a Syringe in Blinded Clinical Trials: Advances and Key Aspects Related to Blinding/Matching/Masking Strategies for Placebo Formulation. Comparison of a Series of 68Ga-Labeled DOTA-LLP2A Conjugates for Positron Emission Tomography Imaging of Very Late Antigen-4 in Melanoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1