{"title":"发现分子胶水降解剂的途径。","authors":"Yanfen Liu , Jieyun Bai , Dong Li , Yong Cang","doi":"10.1016/j.tibs.2024.12.006","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular glue degraders (MGDs) represent a unique class of targeted protein degradation (TPD) modalities. By facilitating protein–protein interactions between E3 ubiquitin ligases and neo-substrates, MGDs offer a novel approach to target previously undruggable or insufficiently drugged disease-causing proteins. Here, we present an overview of recently reported MGDs, highlighting their diverse mechanisms, and we discuss mechanism-based strategies to discover new MGDs and neo-substrates. These strategies include repurposing existing E3 ubiquitin ligase-targeting ligands, screening for novel binders to proteins of interest, and leveraging functional genomics and quantitative proteomics to probe the MGD mechanism of action. Despite their historically serendipitous discovery, MGDs are on their way to being rationally designed to deplete undesired proteins by purposely altering the evolutionarily conserved ligase:substrate interactions.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 2","pages":"Pages 134-142"},"PeriodicalIF":11.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Routes to molecular glue degrader discovery\",\"authors\":\"Yanfen Liu , Jieyun Bai , Dong Li , Yong Cang\",\"doi\":\"10.1016/j.tibs.2024.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molecular glue degraders (MGDs) represent a unique class of targeted protein degradation (TPD) modalities. By facilitating protein–protein interactions between E3 ubiquitin ligases and neo-substrates, MGDs offer a novel approach to target previously undruggable or insufficiently drugged disease-causing proteins. Here, we present an overview of recently reported MGDs, highlighting their diverse mechanisms, and we discuss mechanism-based strategies to discover new MGDs and neo-substrates. These strategies include repurposing existing E3 ubiquitin ligase-targeting ligands, screening for novel binders to proteins of interest, and leveraging functional genomics and quantitative proteomics to probe the MGD mechanism of action. Despite their historically serendipitous discovery, MGDs are on their way to being rationally designed to deplete undesired proteins by purposely altering the evolutionarily conserved ligase:substrate interactions.</div></div>\",\"PeriodicalId\":440,\"journal\":{\"name\":\"Trends in Biochemical Sciences\",\"volume\":\"50 2\",\"pages\":\"Pages 134-142\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Biochemical Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968000424002780\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424002780","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular glue degraders (MGDs) represent a unique class of targeted protein degradation (TPD) modalities. By facilitating protein–protein interactions between E3 ubiquitin ligases and neo-substrates, MGDs offer a novel approach to target previously undruggable or insufficiently drugged disease-causing proteins. Here, we present an overview of recently reported MGDs, highlighting their diverse mechanisms, and we discuss mechanism-based strategies to discover new MGDs and neo-substrates. These strategies include repurposing existing E3 ubiquitin ligase-targeting ligands, screening for novel binders to proteins of interest, and leveraging functional genomics and quantitative proteomics to probe the MGD mechanism of action. Despite their historically serendipitous discovery, MGDs are on their way to being rationally designed to deplete undesired proteins by purposely altering the evolutionarily conserved ligase:substrate interactions.
期刊介绍:
For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.