{"title":"用基质辅助激光解吸/电离质谱法对5-硝基水杨酸和1,5-二氨基萘进行腺嘌呤、鸟嘌呤和黄嘌呤衍生物的结构分类","authors":"Tohru Yamagaki, Mika Nobuhara","doi":"10.1021/jasms.4c00405","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we analyzed purine derivatives using multimatrix variation matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) with α-cyano-4-hydroxycinnamic acid (CHCA), 1,5-diaminonaphtalene (DAN), 5-formylsalicylic acid (FSA), and 5-nitrosalicylic acid (NSA) as matrices. Further, we focused on the abstraction/attachment of hydrogen from/to analytes and detected [M - H]<sup>+</sup>, [M + 2H]<sup>+•</sup> and/or [M + 3H]<sup>+</sup> in MALDI MS spectra of compounds containing nitrogen and/or carbonyl oxygen. Although [M - H]<sup>+</sup> generation of purine compounds in MALDI MS with conventional matrices was challenging, NSA-MALDI MS effectively yielded the [M - H]<sup>+</sup>species of purine derivatives compared with CHCA, FSA, and DAN, and the [M - H]<sup>+</sup>/[M + H]<sup>+</sup> ratios reflected their structures, such as the substituting groups and positions. We speculated that the molecular ion [M]<sup>+•</sup> generated and the subsequent hydrogen radical abstraction proceeded by NSA matrix from the α-carbon of the amine group. The nitro group (-NO<sub>2</sub>) of NSA can withdraw hydrogen radicals in photochemical reactions. The [M - H]<sup>+</sup> of adenosine, guanosine, and inosine suggested that hydrogen abstraction occurred in the ribose unit. The xanthine isomer of paraxanthine was distinguished from those of theophylline and theobromine using their [M - H]<sup>+</sup>/[M + H]<sup>+</sup> ratios obtained with NSA-MALDI MS. Additionally, [M + 2H]<sup>+•</sup> generated in DAN-MALDI MS of xanthine derivatives due to their carbonyl groups. The relative abundances of [M + 2H]<sup>+•</sup> of xanthine derivatives were much higher than those of the other purine derivatives such as adenine derivatives which generated [M + 3H]<sup>+</sup> in their DAN-MALDI MS. DAN induced the hydrogen attachment of purine compounds because the amine group (-NH<sub>2</sub>) of DAN can give hydrogen radicals in photochemical reactions. NSA- and DAN-MALDI MS characterized purine derivatives and were useful for their structure categorization.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Categorization of Adenine, Guanine, and Xanthine Derivatives Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with 5-Nitrosalicylic Acid and 1,5-Diaminonaphtalene.\",\"authors\":\"Tohru Yamagaki, Mika Nobuhara\",\"doi\":\"10.1021/jasms.4c00405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we analyzed purine derivatives using multimatrix variation matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) with α-cyano-4-hydroxycinnamic acid (CHCA), 1,5-diaminonaphtalene (DAN), 5-formylsalicylic acid (FSA), and 5-nitrosalicylic acid (NSA) as matrices. Further, we focused on the abstraction/attachment of hydrogen from/to analytes and detected [M - H]<sup>+</sup>, [M + 2H]<sup>+•</sup> and/or [M + 3H]<sup>+</sup> in MALDI MS spectra of compounds containing nitrogen and/or carbonyl oxygen. Although [M - H]<sup>+</sup> generation of purine compounds in MALDI MS with conventional matrices was challenging, NSA-MALDI MS effectively yielded the [M - H]<sup>+</sup>species of purine derivatives compared with CHCA, FSA, and DAN, and the [M - H]<sup>+</sup>/[M + H]<sup>+</sup> ratios reflected their structures, such as the substituting groups and positions. We speculated that the molecular ion [M]<sup>+•</sup> generated and the subsequent hydrogen radical abstraction proceeded by NSA matrix from the α-carbon of the amine group. The nitro group (-NO<sub>2</sub>) of NSA can withdraw hydrogen radicals in photochemical reactions. The [M - H]<sup>+</sup> of adenosine, guanosine, and inosine suggested that hydrogen abstraction occurred in the ribose unit. The xanthine isomer of paraxanthine was distinguished from those of theophylline and theobromine using their [M - H]<sup>+</sup>/[M + H]<sup>+</sup> ratios obtained with NSA-MALDI MS. Additionally, [M + 2H]<sup>+•</sup> generated in DAN-MALDI MS of xanthine derivatives due to their carbonyl groups. The relative abundances of [M + 2H]<sup>+•</sup> of xanthine derivatives were much higher than those of the other purine derivatives such as adenine derivatives which generated [M + 3H]<sup>+</sup> in their DAN-MALDI MS. DAN induced the hydrogen attachment of purine compounds because the amine group (-NH<sub>2</sub>) of DAN can give hydrogen radicals in photochemical reactions. NSA- and DAN-MALDI MS characterized purine derivatives and were useful for their structure categorization.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.4c00405\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00405","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Structural Categorization of Adenine, Guanine, and Xanthine Derivatives Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with 5-Nitrosalicylic Acid and 1,5-Diaminonaphtalene.
In this study, we analyzed purine derivatives using multimatrix variation matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) with α-cyano-4-hydroxycinnamic acid (CHCA), 1,5-diaminonaphtalene (DAN), 5-formylsalicylic acid (FSA), and 5-nitrosalicylic acid (NSA) as matrices. Further, we focused on the abstraction/attachment of hydrogen from/to analytes and detected [M - H]+, [M + 2H]+• and/or [M + 3H]+ in MALDI MS spectra of compounds containing nitrogen and/or carbonyl oxygen. Although [M - H]+ generation of purine compounds in MALDI MS with conventional matrices was challenging, NSA-MALDI MS effectively yielded the [M - H]+species of purine derivatives compared with CHCA, FSA, and DAN, and the [M - H]+/[M + H]+ ratios reflected their structures, such as the substituting groups and positions. We speculated that the molecular ion [M]+• generated and the subsequent hydrogen radical abstraction proceeded by NSA matrix from the α-carbon of the amine group. The nitro group (-NO2) of NSA can withdraw hydrogen radicals in photochemical reactions. The [M - H]+ of adenosine, guanosine, and inosine suggested that hydrogen abstraction occurred in the ribose unit. The xanthine isomer of paraxanthine was distinguished from those of theophylline and theobromine using their [M - H]+/[M + H]+ ratios obtained with NSA-MALDI MS. Additionally, [M + 2H]+• generated in DAN-MALDI MS of xanthine derivatives due to their carbonyl groups. The relative abundances of [M + 2H]+• of xanthine derivatives were much higher than those of the other purine derivatives such as adenine derivatives which generated [M + 3H]+ in their DAN-MALDI MS. DAN induced the hydrogen attachment of purine compounds because the amine group (-NH2) of DAN can give hydrogen radicals in photochemical reactions. NSA- and DAN-MALDI MS characterized purine derivatives and were useful for their structure categorization.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives