Andréa B Ball, Anthony E Jones, Kaitlyn B Nguyễn, Amy Rios, Nico Marx, Wei Yuan Hsieh, Krista Yang, Brandon R Desousa, Kristen K O Kim, Michaela Veliova, Zena Marie Del Mundo, Orian S Shirihai, Cristiane Benincá, Linsey Stiles, Steven J Bensinger, Ajit S Divakaruni
{"title":"促炎巨噬细胞的激活不需要氧化磷酸化的抑制。","authors":"Andréa B Ball, Anthony E Jones, Kaitlyn B Nguyễn, Amy Rios, Nico Marx, Wei Yuan Hsieh, Krista Yang, Brandon R Desousa, Kristen K O Kim, Michaela Veliova, Zena Marie Del Mundo, Orian S Shirihai, Cristiane Benincá, Linsey Stiles, Steven J Bensinger, Ajit S Divakaruni","doi":"10.1038/s44319-024-00351-y","DOIUrl":null,"url":null,"abstract":"<p><p>Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable. Here we systematically examine this question and show that reduced oxidative phosphorylation is not required for pro-inflammatory macrophage activation. Different pro-inflammatory stimuli elicit varying effects on bioenergetic parameters, and pharmacologic and genetic models of electron transport chain inhibition show no causative link between respiration and macrophage activation. Furthermore, the signaling metabolites succinate and itaconate can accumulate independently of characteristic breaks in the TCA cycle in mouse and human macrophages, and peritoneal macrophages can be activated in vivo without inhibition of oxidative phosphorylation. The results indicate there is plasticity in the metabolic phenotypes that can support pro-inflammatory macrophage activation.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pro-inflammatory macrophage activation does not require inhibition of oxidative phosphorylation.\",\"authors\":\"Andréa B Ball, Anthony E Jones, Kaitlyn B Nguyễn, Amy Rios, Nico Marx, Wei Yuan Hsieh, Krista Yang, Brandon R Desousa, Kristen K O Kim, Michaela Veliova, Zena Marie Del Mundo, Orian S Shirihai, Cristiane Benincá, Linsey Stiles, Steven J Bensinger, Ajit S Divakaruni\",\"doi\":\"10.1038/s44319-024-00351-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable. Here we systematically examine this question and show that reduced oxidative phosphorylation is not required for pro-inflammatory macrophage activation. Different pro-inflammatory stimuli elicit varying effects on bioenergetic parameters, and pharmacologic and genetic models of electron transport chain inhibition show no causative link between respiration and macrophage activation. Furthermore, the signaling metabolites succinate and itaconate can accumulate independently of characteristic breaks in the TCA cycle in mouse and human macrophages, and peritoneal macrophages can be activated in vivo without inhibition of oxidative phosphorylation. The results indicate there is plasticity in the metabolic phenotypes that can support pro-inflammatory macrophage activation.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-024-00351-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00351-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pro-inflammatory macrophage activation does not require inhibition of oxidative phosphorylation.
Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable. Here we systematically examine this question and show that reduced oxidative phosphorylation is not required for pro-inflammatory macrophage activation. Different pro-inflammatory stimuli elicit varying effects on bioenergetic parameters, and pharmacologic and genetic models of electron transport chain inhibition show no causative link between respiration and macrophage activation. Furthermore, the signaling metabolites succinate and itaconate can accumulate independently of characteristic breaks in the TCA cycle in mouse and human macrophages, and peritoneal macrophages can be activated in vivo without inhibition of oxidative phosphorylation. The results indicate there is plasticity in the metabolic phenotypes that can support pro-inflammatory macrophage activation.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.