Katherine S Scheuer, Anna M Jansson, Minjie Shen, Xinyu Zhao, Meyer B Jackson
{"title":"皮层小白蛋白中间神经元FXR1缺失改变其兴奋性突触反应。","authors":"Katherine S Scheuer, Anna M Jansson, Minjie Shen, Xinyu Zhao, Meyer B Jackson","doi":"10.1523/ENEURO.0363-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior. This indicates that FXR1 regulates behaviorally relevant electrophysiological functions in PV interneurons. We therefore expressed a genetically encoded hybrid voltage sensor in PV interneurons and used voltage imaging in slices of mouse somatosensory cortex to assess the impact of targeted FXR1 deletion. These experiments showed that PV interneurons lacking FXR1 had excitatory synaptic potentials with larger amplitudes and shorter latencies compared with wild type. Synaptic potential rise-times, decay-times, and half-widths were also impacted to degrees that varied between cortical layer and synaptic input. Thus, FXR1 modulates the responsiveness of PV interneurons to excitatory synaptic inputs. This will enable FXR1 to control cortical processing in subtle ways, with the potential to influence behavior and contribute to psychiatric dysfunction.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735682/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fxr1 Deletion from Cortical Parvalbumin Interneurons Modifies Their Excitatory Synaptic Responses.\",\"authors\":\"Katherine S Scheuer, Anna M Jansson, Minjie Shen, Xinyu Zhao, Meyer B Jackson\",\"doi\":\"10.1523/ENEURO.0363-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior. This indicates that FXR1 regulates behaviorally relevant electrophysiological functions in PV interneurons. We therefore expressed a genetically encoded hybrid voltage sensor in PV interneurons and used voltage imaging in slices of mouse somatosensory cortex to assess the impact of targeted FXR1 deletion. These experiments showed that PV interneurons lacking FXR1 had excitatory synaptic potentials with larger amplitudes and shorter latencies compared with wild type. Synaptic potential rise-times, decay-times, and half-widths were also impacted to degrees that varied between cortical layer and synaptic input. Thus, FXR1 modulates the responsiveness of PV interneurons to excitatory synaptic inputs. This will enable FXR1 to control cortical processing in subtle ways, with the potential to influence behavior and contribute to psychiatric dysfunction.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0363-24.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0363-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Fxr1 Deletion from Cortical Parvalbumin Interneurons Modifies Their Excitatory Synaptic Responses.
Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior. This indicates that FXR1 regulates behaviorally relevant electrophysiological functions in PV interneurons. We therefore expressed a genetically encoded hybrid voltage sensor in PV interneurons and used voltage imaging in slices of mouse somatosensory cortex to assess the impact of targeted FXR1 deletion. These experiments showed that PV interneurons lacking FXR1 had excitatory synaptic potentials with larger amplitudes and shorter latencies compared with wild type. Synaptic potential rise-times, decay-times, and half-widths were also impacted to degrees that varied between cortical layer and synaptic input. Thus, FXR1 modulates the responsiveness of PV interneurons to excitatory synaptic inputs. This will enable FXR1 to control cortical processing in subtle ways, with the potential to influence behavior and contribute to psychiatric dysfunction.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.