细胞形状通过细胞内流体动力学调节有丝分裂纺锤体定位力。

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2025-01-20 Epub Date: 2025-01-03 DOI:10.1016/j.cub.2024.11.055
Jing Xie, Javad Najafi, Aude Nommick, Luc Lederer, Jeremy Salle, Serge Dmitrieff, Benjamin Lacroix, Julien Dumont, Nicolas Minc
{"title":"细胞形状通过细胞内流体动力学调节有丝分裂纺锤体定位力。","authors":"Jing Xie, Javad Najafi, Aude Nommick, Luc Lederer, Jeremy Salle, Serge Dmitrieff, Benjamin Lacroix, Julien Dumont, Nicolas Minc","doi":"10.1016/j.cub.2024.11.055","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup> In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis.<sup>6</sup><sup>,</sup><sup>7</sup><sup>,</sup><sup>8</sup><sup>,</sup><sup>9</sup><sup>,</sup><sup>10</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup><sup>,</sup><sup>13</sup><sup>,</sup><sup>14</sup> To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry. Here, we used in vivo magnetic tweezers to directly measure the forces that maintain the mitotic spindle in the center of sea urchin cells that adopt different shapes during early embryo development. We found that spindles are held by viscoelastic forces that progressively increase in amplitude as cells become more elongated during early development. By coupling direct cell shape manipulations in microfabricated chambers with in vivo force measurements, we establish how spindle-associated forces increase in dose dependence with cell shape anisotropy. Cytoplasm flow analysis and hydrodynamic simulations suggest that this geometry-dependent mechanical enhancement results from a stronger hydrodynamic coupling between the spindle and cell boundaries, which dampens cytoplasm flows and spindle mobility as cells become more elongated. These findings establish how cell shape affects spindle-associated forces and suggest a novel mechanism for shape sensing and division positioning mediated by intracellular hydrodynamics with functional implications for early embryo morphogenesis.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"413-421.e6"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell shape modulates mitotic spindle positioning forces via intracellular hydrodynamics.\",\"authors\":\"Jing Xie, Javad Najafi, Aude Nommick, Luc Lederer, Jeremy Salle, Serge Dmitrieff, Benjamin Lacroix, Julien Dumont, Nicolas Minc\",\"doi\":\"10.1016/j.cub.2024.11.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup> In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis.<sup>6</sup><sup>,</sup><sup>7</sup><sup>,</sup><sup>8</sup><sup>,</sup><sup>9</sup><sup>,</sup><sup>10</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup><sup>,</sup><sup>13</sup><sup>,</sup><sup>14</sup> To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry. Here, we used in vivo magnetic tweezers to directly measure the forces that maintain the mitotic spindle in the center of sea urchin cells that adopt different shapes during early embryo development. We found that spindles are held by viscoelastic forces that progressively increase in amplitude as cells become more elongated during early development. By coupling direct cell shape manipulations in microfabricated chambers with in vivo force measurements, we establish how spindle-associated forces increase in dose dependence with cell shape anisotropy. Cytoplasm flow analysis and hydrodynamic simulations suggest that this geometry-dependent mechanical enhancement results from a stronger hydrodynamic coupling between the spindle and cell boundaries, which dampens cytoplasm flows and spindle mobility as cells become more elongated. These findings establish how cell shape affects spindle-associated forces and suggest a novel mechanism for shape sensing and division positioning mediated by intracellular hydrodynamics with functional implications for early embryo morphogenesis.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"413-421.e6\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2024.11.055\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.11.055","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有丝分裂纺锤体定位和取向的调控对发育中的胚胎和组织的形态发生至关重要。1、2、3、4、5在许多多细胞环境中,细胞的几何形状已被证明对纺锤体定位有重大影响,纺锤体通常沿着最长的细胞形状轴排列。6、7、8、9、10、11、12、13、14然而,迄今为止,我们仍然不了解定位、定向或保持有丝分裂纺锤体的细胞内力的性质和振幅如何取决于细胞的几何形状。在这里,我们使用体内磁镊直接测量维持海胆细胞中心有丝分裂纺锤体的力,这些细胞在胚胎早期发育过程中呈现不同的形状。我们发现纺锤体是由粘弹性力控制的,随着细胞在早期发育过程中变得越来越长,这种粘弹性力的振幅会逐渐增加。通过将微制造腔室中的直接细胞形状操作与体内力测量相结合,我们确定了主轴相关力如何随细胞形状各向异性的剂量依赖性增加。细胞质流动分析和流体动力学模拟表明,这种几何依赖性的机械增强是由于纺锤体和细胞边界之间更强的流体动力学耦合,当细胞变得更长时,这种耦合抑制了细胞质流动和纺锤体的流动性。这些发现阐明了细胞形状如何影响纺锤体相关力,并提出了一种由细胞内流体动力学介导的形状感知和分裂定位的新机制,具有早期胚胎形态发生的功能意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell shape modulates mitotic spindle positioning forces via intracellular hydrodynamics.

The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues.1,2,3,4,5 In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis.6,7,8,9,10,11,12,13,14 To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry. Here, we used in vivo magnetic tweezers to directly measure the forces that maintain the mitotic spindle in the center of sea urchin cells that adopt different shapes during early embryo development. We found that spindles are held by viscoelastic forces that progressively increase in amplitude as cells become more elongated during early development. By coupling direct cell shape manipulations in microfabricated chambers with in vivo force measurements, we establish how spindle-associated forces increase in dose dependence with cell shape anisotropy. Cytoplasm flow analysis and hydrodynamic simulations suggest that this geometry-dependent mechanical enhancement results from a stronger hydrodynamic coupling between the spindle and cell boundaries, which dampens cytoplasm flows and spindle mobility as cells become more elongated. These findings establish how cell shape affects spindle-associated forces and suggest a novel mechanism for shape sensing and division positioning mediated by intracellular hydrodynamics with functional implications for early embryo morphogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
Cross-modal cortical circuit for sound sensitivity in neuropathic pain. Extracellular volume expansion drives vertebrate axis elongation. Abscisic acid receptors functionally converge across 500 million years of land plant evolution. The rate of glucose metabolism sets the cell morphology across yeast strains and species. Complexity of the lichen symbiosis revealed by metagenome and transcriptome analysis of Xanthoria parietina.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1