病理学和医学中的人工智能(AI)和机器学习(ML)导论:生成和非生成AI基础。

IF 7.1 1区 医学 Q1 PATHOLOGY Modern Pathology Pub Date : 2025-01-02 DOI:10.1016/j.modpat.2024.100688
Hooman H Rashidi, Joshua Pantanowitz, Mathew Hanna, Ahmad P Tafti, Parth Sanghani, Adam Buchinsky, Brandon Fennell, Mustafa Deebajah, Sarah Wheeler, Thomas Pearce, Ibrahim Abukhiran, Scott Robertson, Octavia Palmer, Mert Gur, Nam K Tran, Liron Pantanowitz
{"title":"病理学和医学中的人工智能(AI)和机器学习(ML)导论:生成和非生成AI基础。","authors":"Hooman H Rashidi, Joshua Pantanowitz, Mathew Hanna, Ahmad P Tafti, Parth Sanghani, Adam Buchinsky, Brandon Fennell, Mustafa Deebajah, Sarah Wheeler, Thomas Pearce, Ibrahim Abukhiran, Scott Robertson, Octavia Palmer, Mert Gur, Nam K Tran, Liron Pantanowitz","doi":"10.1016/j.modpat.2024.100688","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript serves as an introduction to a comprehensive seven-part review article series on artificial intelligence (AI) and machine learning (ML) and their current and future influence within pathology and medicine. This introductory review provides a comprehensive grasp of this fast-expanding realm and its potential to transform medical diagnosis, workflow, research, and education. Fundamental terminology employed in AI-ML is covered using an extensive dictionary. The article also provides a broad overview of the main domains in the AI-ML field, encompassing both generative and non-generative (traditional) AI. Thereby serving as a primer to the other six review articles in this series that describe the details about statistics, regulations, bias, ethical dilemmas, and ML-Ops in AI-ML. The intent of these review articles is to better equip individuals who are or will be working in an AI-enabled healthcare system.</p>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":" ","pages":"100688"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction to Artificial Intelligence (AI) and Machine Learning (ML) in Pathology & Medicine: Generative & Non-Generative AI Basics.\",\"authors\":\"Hooman H Rashidi, Joshua Pantanowitz, Mathew Hanna, Ahmad P Tafti, Parth Sanghani, Adam Buchinsky, Brandon Fennell, Mustafa Deebajah, Sarah Wheeler, Thomas Pearce, Ibrahim Abukhiran, Scott Robertson, Octavia Palmer, Mert Gur, Nam K Tran, Liron Pantanowitz\",\"doi\":\"10.1016/j.modpat.2024.100688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This manuscript serves as an introduction to a comprehensive seven-part review article series on artificial intelligence (AI) and machine learning (ML) and their current and future influence within pathology and medicine. This introductory review provides a comprehensive grasp of this fast-expanding realm and its potential to transform medical diagnosis, workflow, research, and education. Fundamental terminology employed in AI-ML is covered using an extensive dictionary. The article also provides a broad overview of the main domains in the AI-ML field, encompassing both generative and non-generative (traditional) AI. Thereby serving as a primer to the other six review articles in this series that describe the details about statistics, regulations, bias, ethical dilemmas, and ML-Ops in AI-ML. The intent of these review articles is to better equip individuals who are or will be working in an AI-enabled healthcare system.</p>\",\"PeriodicalId\":18706,\"journal\":{\"name\":\"Modern Pathology\",\"volume\":\" \",\"pages\":\"100688\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.modpat.2024.100688\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.modpat.2024.100688","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

该手稿是关于人工智能(AI)和机器学习(ML)及其在病理学和医学中的当前和未来影响的综合七部分综述文章系列的介绍。这篇介绍性的综述提供了对这一快速扩展领域的全面把握,以及它在改变医疗诊断、工作流程、研究和教育方面的潜力。AI-ML中使用的基本术语使用广泛的字典进行介绍。本文还提供了AI- ml领域主要领域的广泛概述,包括生成和非生成(传统)AI。因此,作为本系列中其他六篇评论文章的入门文章,这些文章描述了AI-ML中的统计数据、法规、偏见、道德困境和ML-Ops的细节。这些评论文章的目的是更好地装备那些正在或将要在支持人工智能的医疗保健系统中工作的个人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introduction to Artificial Intelligence (AI) and Machine Learning (ML) in Pathology & Medicine: Generative & Non-Generative AI Basics.

This manuscript serves as an introduction to a comprehensive seven-part review article series on artificial intelligence (AI) and machine learning (ML) and their current and future influence within pathology and medicine. This introductory review provides a comprehensive grasp of this fast-expanding realm and its potential to transform medical diagnosis, workflow, research, and education. Fundamental terminology employed in AI-ML is covered using an extensive dictionary. The article also provides a broad overview of the main domains in the AI-ML field, encompassing both generative and non-generative (traditional) AI. Thereby serving as a primer to the other six review articles in this series that describe the details about statistics, regulations, bias, ethical dilemmas, and ML-Ops in AI-ML. The intent of these review articles is to better equip individuals who are or will be working in an AI-enabled healthcare system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Pathology
Modern Pathology 医学-病理学
CiteScore
14.30
自引率
2.70%
发文量
174
审稿时长
18 days
期刊介绍: Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology. Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.
期刊最新文献
Classification of Fibro-osseous Tumors in the Craniofacial Bones using DNA Methylation and Copy Number Alterations. Diffuse Cyclin D1 and SPINK1 Expression in Gastric Oxyntic Gland Neoplasms: Promising Diagnostic Markers Identified by Spatial Transcriptome Analysis. Ex Vivo Fluorescence Confocal Microscopy for intraoperative evaluations of staple lines and surgical margins in specimens of the lung - a proof-of-concept study. Digital Profiling of Immune Biomarkers in Breast Cancer: Relation to Anthracycline Benefit. TP53 Wild-type, HPV-independent Anal Growth/(intra)Epithelial Lesion (ANGEL): a Potential Precursor of Anal Squamous Cell Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1