{"title":"更快的步行速度对提高生物力学功能和步行性能很重要。","authors":"Hannah L Jarvis, Philip Nagy, Neil D Reeves","doi":"10.1123/jab.2023-0230","DOIUrl":null,"url":null,"abstract":"<p><p>This study compares joint kinematics and kinetics of young stroke survivors who walk <0.79 m/s (slow) or >0.80 m/s (fast) with reference to a healthy able-bodied group and provides clinical recommendations for guiding the gait rehabilitation of stroke survivors. Twenty-two young stroke survivors (18-55 y) were recruited from 6 hospital sites in the United Kingdom. Stroke participants were classified by walking speed as slow (<0.79) or fast (>0.80 m/s), and joint kinematics and kinetics at the pelvis, hip, knee, and ankle were measured during walking on level ground at self-selected speed. Ten walking biomechanical parameters correlated to walking speed (ρ ≥ .550). Stroke survivors in the slow group walked with significantly greater range of sagittal plane pelvic motion (P < .009), reduced range of hip adduction and abduction (P < .011), and smaller peak hip extension angle (P < .011) and hip flexion moment (P < .029) for the paretic limb. For the nonparetic limb, a significantly reduced hip flexion moment (P < .040) was observed compared with the fast group and control. We are the first to report how biomechanical function during walking is compromised in young stroke survivors classified by walking speed as slow (<0.79 m/s) or fast (>0.80 m/s) and propose that these biomechanical parameters be used to inform rehabilitation programs to improve walking for stroke survivors.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"70-86"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Faster Walking Speed Is Important for Improving Biomechanical Function and Walking Performance in Stroke Survivors.\",\"authors\":\"Hannah L Jarvis, Philip Nagy, Neil D Reeves\",\"doi\":\"10.1123/jab.2023-0230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study compares joint kinematics and kinetics of young stroke survivors who walk <0.79 m/s (slow) or >0.80 m/s (fast) with reference to a healthy able-bodied group and provides clinical recommendations for guiding the gait rehabilitation of stroke survivors. Twenty-two young stroke survivors (18-55 y) were recruited from 6 hospital sites in the United Kingdom. Stroke participants were classified by walking speed as slow (<0.79) or fast (>0.80 m/s), and joint kinematics and kinetics at the pelvis, hip, knee, and ankle were measured during walking on level ground at self-selected speed. Ten walking biomechanical parameters correlated to walking speed (ρ ≥ .550). Stroke survivors in the slow group walked with significantly greater range of sagittal plane pelvic motion (P < .009), reduced range of hip adduction and abduction (P < .011), and smaller peak hip extension angle (P < .011) and hip flexion moment (P < .029) for the paretic limb. For the nonparetic limb, a significantly reduced hip flexion moment (P < .040) was observed compared with the fast group and control. We are the first to report how biomechanical function during walking is compromised in young stroke survivors classified by walking speed as slow (<0.79 m/s) or fast (>0.80 m/s) and propose that these biomechanical parameters be used to inform rehabilitation programs to improve walking for stroke survivors.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":\" \",\"pages\":\"70-86\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2023-0230\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2023-0230","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Faster Walking Speed Is Important for Improving Biomechanical Function and Walking Performance in Stroke Survivors.
This study compares joint kinematics and kinetics of young stroke survivors who walk <0.79 m/s (slow) or >0.80 m/s (fast) with reference to a healthy able-bodied group and provides clinical recommendations for guiding the gait rehabilitation of stroke survivors. Twenty-two young stroke survivors (18-55 y) were recruited from 6 hospital sites in the United Kingdom. Stroke participants were classified by walking speed as slow (<0.79) or fast (>0.80 m/s), and joint kinematics and kinetics at the pelvis, hip, knee, and ankle were measured during walking on level ground at self-selected speed. Ten walking biomechanical parameters correlated to walking speed (ρ ≥ .550). Stroke survivors in the slow group walked with significantly greater range of sagittal plane pelvic motion (P < .009), reduced range of hip adduction and abduction (P < .011), and smaller peak hip extension angle (P < .011) and hip flexion moment (P < .029) for the paretic limb. For the nonparetic limb, a significantly reduced hip flexion moment (P < .040) was observed compared with the fast group and control. We are the first to report how biomechanical function during walking is compromised in young stroke survivors classified by walking speed as slow (<0.79 m/s) or fast (>0.80 m/s) and propose that these biomechanical parameters be used to inform rehabilitation programs to improve walking for stroke survivors.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.