盐碱地土壤有机碳固存对有机质添加的响应——基于土壤团聚体结构和有机碳组分的研究

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2025-01-06 DOI:10.1007/s11104-024-07163-y
Liuyu Zhang, Mengmeng Chen, Yutong Zong, Zeqiang Sun, Yuyi Li, Xiaodong Ding, Shirong Zhang
{"title":"盐碱地土壤有机碳固存对有机质添加的响应——基于土壤团聚体结构和有机碳组分的研究","authors":"Liuyu Zhang, Mengmeng Chen, Yutong Zong, Zeqiang Sun, Yuyi Li, Xiaodong Ding, Shirong Zhang","doi":"10.1007/s11104-024-07163-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Promoting soil organic carbon (SOC) sequestration is the key to improving soil quality. Adding organic materials is a common practice to promote SOC sequestration. However, the mechanism of SOC sequestration in saline-alkali soil with different organic materials addition is still unclear.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Field experiment was conducted: (1) Control, no fertilization; (2) NPK, only mineral fertilizer addition; (3) OF, NPK plus 2000 kg C ha<sup>-1</sup> addition of organic fertilizer; (4) MS, NPK plus 2000 kg C ha<sup>-1</sup> addition of maize straw.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Compared with NPK treatment, the mean weight diameter (MWD) in OF and MS treatments was increased by 23.08% and 11.54%, respectively, which was due to the reduction of exchangeable sodium saturation percentage. Exchangeable calcium and magnesium were positively correlated with MWD, and their contents in OF treatment were 6.89-32.05% higher than those in MS treatment. Meanwhile, MWD was positively correlated with SOC stock, and small macro-aggregates contributed the most to SOC. Compared with NPK treatment, the ratio of mineral-associated organic carbon to particular organic carbon in MS and OF treatments were increased by 34.06% and 80.88%, respectively. Exchangeable magnesium and calcium could bind with polysaccharide, carboxyl and phenol to form complex under organic materials addition. Hence, SOC stock in OF and MS treatments was increased by 14.18% and 6.38% compared to NPK treatment, respectively.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The addition of organic materials improved the stability of aggregate structure and SOC pool in saline-alkali soil, thereby promoting SOC sequestration, in which organic fertilizer showed better effect.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"2 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The response of soil organic carbon sequestration to organic materials addition in saline-alkali soil: from the perspective of soil aggregate structure and organic carbon component\",\"authors\":\"Liuyu Zhang, Mengmeng Chen, Yutong Zong, Zeqiang Sun, Yuyi Li, Xiaodong Ding, Shirong Zhang\",\"doi\":\"10.1007/s11104-024-07163-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background and aims</h3><p>Promoting soil organic carbon (SOC) sequestration is the key to improving soil quality. Adding organic materials is a common practice to promote SOC sequestration. However, the mechanism of SOC sequestration in saline-alkali soil with different organic materials addition is still unclear.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>Field experiment was conducted: (1) Control, no fertilization; (2) NPK, only mineral fertilizer addition; (3) OF, NPK plus 2000 kg C ha<sup>-1</sup> addition of organic fertilizer; (4) MS, NPK plus 2000 kg C ha<sup>-1</sup> addition of maize straw.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Compared with NPK treatment, the mean weight diameter (MWD) in OF and MS treatments was increased by 23.08% and 11.54%, respectively, which was due to the reduction of exchangeable sodium saturation percentage. Exchangeable calcium and magnesium were positively correlated with MWD, and their contents in OF treatment were 6.89-32.05% higher than those in MS treatment. Meanwhile, MWD was positively correlated with SOC stock, and small macro-aggregates contributed the most to SOC. Compared with NPK treatment, the ratio of mineral-associated organic carbon to particular organic carbon in MS and OF treatments were increased by 34.06% and 80.88%, respectively. Exchangeable magnesium and calcium could bind with polysaccharide, carboxyl and phenol to form complex under organic materials addition. Hence, SOC stock in OF and MS treatments was increased by 14.18% and 6.38% compared to NPK treatment, respectively.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The addition of organic materials improved the stability of aggregate structure and SOC pool in saline-alkali soil, thereby promoting SOC sequestration, in which organic fertilizer showed better effect.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-024-07163-y\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07163-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的促进土壤有机碳(SOC)的固存是改善土壤质量的关键。添加有机材料是促进有机碳固存的常用方法。然而,不同有机质添加量对盐碱土固碳机制的影响尚不清楚。方法田间试验:(1)对照,不施肥;(2) NPK,只添加矿物肥;(3) OF、NPK +添加有机肥料2000 kg C ha-1;(4)玉米秸秆添加MS、NPK + 2000 kg cha -1。结果与NPK处理相比,OF和MS处理的平均重径(MWD)分别提高了23.08%和11.54%,这是由于降低了交换钠饱和率。交换性钙、镁与随钻率呈正相关,OF处理的交换性钙、镁含量比MS处理高6.89 ~ 32.05%。同时,随钻距离与土壤有机碳储量呈正相关,且小的宏观聚集体对土壤有机碳贡献最大。与NPK处理相比,MS和of处理的矿物伴生有机碳与特定有机碳之比分别提高了34.06%和80.88%。在有机物质的作用下,交换性镁和钙可以与多糖、羧基和苯酚结合形成络合物。与NPK处理相比,有机肥处理和MS处理的土壤有机碳储量分别增加了14.18%和6.38%。结论有机物质的添加提高了盐碱土团聚体结构的稳定性和有机碳库,从而促进了有机碳的固存,其中有机肥的效果更好。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The response of soil organic carbon sequestration to organic materials addition in saline-alkali soil: from the perspective of soil aggregate structure and organic carbon component

Background and aims

Promoting soil organic carbon (SOC) sequestration is the key to improving soil quality. Adding organic materials is a common practice to promote SOC sequestration. However, the mechanism of SOC sequestration in saline-alkali soil with different organic materials addition is still unclear.

Methods

Field experiment was conducted: (1) Control, no fertilization; (2) NPK, only mineral fertilizer addition; (3) OF, NPK plus 2000 kg C ha-1 addition of organic fertilizer; (4) MS, NPK plus 2000 kg C ha-1 addition of maize straw.

Results

Compared with NPK treatment, the mean weight diameter (MWD) in OF and MS treatments was increased by 23.08% and 11.54%, respectively, which was due to the reduction of exchangeable sodium saturation percentage. Exchangeable calcium and magnesium were positively correlated with MWD, and their contents in OF treatment were 6.89-32.05% higher than those in MS treatment. Meanwhile, MWD was positively correlated with SOC stock, and small macro-aggregates contributed the most to SOC. Compared with NPK treatment, the ratio of mineral-associated organic carbon to particular organic carbon in MS and OF treatments were increased by 34.06% and 80.88%, respectively. Exchangeable magnesium and calcium could bind with polysaccharide, carboxyl and phenol to form complex under organic materials addition. Hence, SOC stock in OF and MS treatments was increased by 14.18% and 6.38% compared to NPK treatment, respectively.

Conclusion

The addition of organic materials improved the stability of aggregate structure and SOC pool in saline-alkali soil, thereby promoting SOC sequestration, in which organic fertilizer showed better effect.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Adaptation strategies of three legumes to soil phosphorus availability in steppes of Inner Mongolia Linkage between plant nitrogen preference and rhizosphere effects on soil nitrogen transformation reveals a plant resource adaptive strategies in nitrogen-limited soils Water consumption turning point for Robinia pseudoacacia occurs at its middle stand age The divergent response of fungal and bacterial necromass carbon in soil aggregates under biochar amendment in paddy soil Flooding-driven gravel encroachment reshapes plant community structure and reduces community stability in an arid alluvial fan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1