采用部分反放技术提高分段放顶煤回采率

IF 11.7 1区 工程技术 Q1 MINING & MINERAL PROCESSING International Journal of Mining Science and Technology Pub Date : 2024-12-01 DOI:10.1016/j.ijmst.2024.11.010
Jinwang Zhang , Dongliang Cheng , Jiachen Wang , Shengli Yang , Xiaohang Wan , Xinyang Li
{"title":"采用部分反放技术提高分段放顶煤回采率","authors":"Jinwang Zhang ,&nbsp;Dongliang Cheng ,&nbsp;Jiachen Wang ,&nbsp;Shengli Yang ,&nbsp;Xiaohang Wan ,&nbsp;Xinyang Li","doi":"10.1016/j.ijmst.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>The sublevel top coal caving (SLTCC) mining technology is extensively employed in steeply inclined thick coal seams. Because of the typical characteristics of the short coal face in this mining method, a significant portion of the top coal is lost at the face end. For reducing the coal loss, the partially reverse drawing technique (PRDT) is proposed as a novel top coal drawing technique. Meanwhile, based on the Bergmark-Roos model (B-R model), a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed. The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique (SSDT). Physical experiments and in-site observation data were used to verify the theoretical model. The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary. Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 12","pages":"Pages 1655-1676"},"PeriodicalIF":11.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving recovery in sublevel top coal caving mining by using partially reverse drawing technique\",\"authors\":\"Jinwang Zhang ,&nbsp;Dongliang Cheng ,&nbsp;Jiachen Wang ,&nbsp;Shengli Yang ,&nbsp;Xiaohang Wan ,&nbsp;Xinyang Li\",\"doi\":\"10.1016/j.ijmst.2024.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The sublevel top coal caving (SLTCC) mining technology is extensively employed in steeply inclined thick coal seams. Because of the typical characteristics of the short coal face in this mining method, a significant portion of the top coal is lost at the face end. For reducing the coal loss, the partially reverse drawing technique (PRDT) is proposed as a novel top coal drawing technique. Meanwhile, based on the Bergmark-Roos model (B-R model), a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed. The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique (SSDT). Physical experiments and in-site observation data were used to verify the theoretical model. The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary. Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.</div></div>\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"34 12\",\"pages\":\"Pages 1655-1676\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095268624001721\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624001721","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

分段放顶煤开采技术在急倾斜厚煤层中得到了广泛的应用。由于该开采方法工作面短的典型特点,工作面末端有相当一部分顶煤损失。为了减少煤的损失,提出了部分反放煤技术作为一种新的放煤技术。同时,基于Bergmark-Roos模型(B-R模型),提出了一种基于顶煤边界方程和顶煤剩余量计算顶煤回收率的理论方法。通过与单轮序放技术(SSDT)的对比,揭示了PRDT降低工作面顶煤损失的机理。利用物理实验和现场观测数据对理论模型进行了验证。结果表明,PRDT通过优化顶煤边界形状特征,可以有效减少顶板附近残煤量。根据武东煤矿工作面参数,提出了提高采收率的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving recovery in sublevel top coal caving mining by using partially reverse drawing technique
The sublevel top coal caving (SLTCC) mining technology is extensively employed in steeply inclined thick coal seams. Because of the typical characteristics of the short coal face in this mining method, a significant portion of the top coal is lost at the face end. For reducing the coal loss, the partially reverse drawing technique (PRDT) is proposed as a novel top coal drawing technique. Meanwhile, based on the Bergmark-Roos model (B-R model), a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed. The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique (SSDT). Physical experiments and in-site observation data were used to verify the theoretical model. The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary. Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mining Science and Technology
International Journal of Mining Science and Technology Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
19.10
自引率
11.90%
发文量
2541
审稿时长
44 days
期刊介绍: The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.
期刊最新文献
Multi-frequency formation mechanism and modulation strategy of self-priming enhanced submerged pulsed waterjet Study and application of the influence of inclination angle on the cross-fusion mechanism of high gas thick coal seam Dynamic damage characteristics and control mechanism of rocks anchored by constant resistance and energy absorption material Quantitative principles of dynamic interaction between rock support and surrounding rock in rockburst roadways Theoretical and experimental study on high-entropy flotation of micro-fine cassiterite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1