{"title":"加强矿山地下水系统预测:基于模块化建模的采动诱导水力导度时空变化全过程模拟","authors":"Shihao Meng , Qiang Wu , Yifan Zeng , Leiyu Gu","doi":"10.1016/j.ijmst.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extraction exerts profound effects on groundwater systems, posing a pivotal challenge for promoting green and safe development in underground engineering. To address this, a novel numerical model with an explicit coupling simulation strategy is presented. This model integrates distinct modules for individual physical mechanisms, ensuring second-order accuracy through shared time integration, thereby overcoming limitations in simulating mining-induced strata damage, water flow, and permeability dynamics. A novel mathematical model is incorporated into the mechanical simulation to characterize the abrupt increase in permeability resulting from rock fracture propagation. This increase is quantified by evaluating the plastic damage state of rocks and incorporating a damage coefficient that is intrinsically linked to rock strength. The mechanical model tracks permeability changes due to mining. The flow model simulates aquifer-mine water interactions by calculating hydraulic conductivity and using dynamic zoning, adapting to mining progress. When applied to a case study of a complex mine, this approach significantly improved the accuracy of water inflow rate predictions by 57%.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 12","pages":"Pages 1625-1642"},"PeriodicalIF":11.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing mine groundwater system prediction: Full-process simulation of mining-induced spatio-temporal variations in hydraulic conductivities via modularized modeling\",\"authors\":\"Shihao Meng , Qiang Wu , Yifan Zeng , Leiyu Gu\",\"doi\":\"10.1016/j.ijmst.2024.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extraction exerts profound effects on groundwater systems, posing a pivotal challenge for promoting green and safe development in underground engineering. To address this, a novel numerical model with an explicit coupling simulation strategy is presented. This model integrates distinct modules for individual physical mechanisms, ensuring second-order accuracy through shared time integration, thereby overcoming limitations in simulating mining-induced strata damage, water flow, and permeability dynamics. A novel mathematical model is incorporated into the mechanical simulation to characterize the abrupt increase in permeability resulting from rock fracture propagation. This increase is quantified by evaluating the plastic damage state of rocks and incorporating a damage coefficient that is intrinsically linked to rock strength. The mechanical model tracks permeability changes due to mining. The flow model simulates aquifer-mine water interactions by calculating hydraulic conductivity and using dynamic zoning, adapting to mining progress. When applied to a case study of a complex mine, this approach significantly improved the accuracy of water inflow rate predictions by 57%.</div></div>\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"34 12\",\"pages\":\"Pages 1625-1642\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095268624001769\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624001769","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Enhancing mine groundwater system prediction: Full-process simulation of mining-induced spatio-temporal variations in hydraulic conductivities via modularized modeling
The intricate interplay between rock mechanics and fracture-induced fluid flow during resource extraction exerts profound effects on groundwater systems, posing a pivotal challenge for promoting green and safe development in underground engineering. To address this, a novel numerical model with an explicit coupling simulation strategy is presented. This model integrates distinct modules for individual physical mechanisms, ensuring second-order accuracy through shared time integration, thereby overcoming limitations in simulating mining-induced strata damage, water flow, and permeability dynamics. A novel mathematical model is incorporated into the mechanical simulation to characterize the abrupt increase in permeability resulting from rock fracture propagation. This increase is quantified by evaluating the plastic damage state of rocks and incorporating a damage coefficient that is intrinsically linked to rock strength. The mechanical model tracks permeability changes due to mining. The flow model simulates aquifer-mine water interactions by calculating hydraulic conductivity and using dynamic zoning, adapting to mining progress. When applied to a case study of a complex mine, this approach significantly improved the accuracy of water inflow rate predictions by 57%.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.