Tianrui Bai, Lynette Edline Momo Jeulefack, Songfeng Li, Jie Cheng, Shuidong Dai, Linhua Liu, Fei Li
{"title":"含光解作用的AlO吸收光谱","authors":"Tianrui Bai, Lynette Edline Momo Jeulefack, Songfeng Li, Jie Cheng, Shuidong Dai, Linhua Liu, Fei Li","doi":"10.1016/j.jqsrt.2024.109335","DOIUrl":null,"url":null,"abstract":"Photodissociation of AlO may be important for the aluminium chemistry in various astrophysical regions. The photodissociation cross sections and rates of AlO were investigated over the temperature range from 0 to 15000 K in this work. Firstly, the state-resolved cross sections at the wavelength of 50 − 5000 nm for transitions from the ground and first excited states were calculated using <ce:italic>ab initio</ce:italic> potential energy curves and transition dipole moments. The temperature-dependent cross sections were then obtained by assuming a Boltzmann distribution to describe the population of the initial state. Several common radiation fields (interstellar, solar and blackbody radiation field) were selected as the radiation fields, and then the photodissociation rates in different radiation fields were obtained. The photodissociation rates in all studied radiation fields exhibit a positive correlation with increasing temperature. This finding indicates that the total photodissociation rates are sensitive to the temperature. In addition, the photodissociation rates in the solar radiation field are higher than those in the interstellar radiation fields, indicating that photodissociation rate is associated with the type of radiation field in which the molecule is exposed. The calculated photodissociation cross sections and rates of AlO are useful to investigate the chemical evolution of the aluminum element in the interstellar environment.","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"34 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorption spectroscopy of AlO including photodissociation\",\"authors\":\"Tianrui Bai, Lynette Edline Momo Jeulefack, Songfeng Li, Jie Cheng, Shuidong Dai, Linhua Liu, Fei Li\",\"doi\":\"10.1016/j.jqsrt.2024.109335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photodissociation of AlO may be important for the aluminium chemistry in various astrophysical regions. The photodissociation cross sections and rates of AlO were investigated over the temperature range from 0 to 15000 K in this work. Firstly, the state-resolved cross sections at the wavelength of 50 − 5000 nm for transitions from the ground and first excited states were calculated using <ce:italic>ab initio</ce:italic> potential energy curves and transition dipole moments. The temperature-dependent cross sections were then obtained by assuming a Boltzmann distribution to describe the population of the initial state. Several common radiation fields (interstellar, solar and blackbody radiation field) were selected as the radiation fields, and then the photodissociation rates in different radiation fields were obtained. The photodissociation rates in all studied radiation fields exhibit a positive correlation with increasing temperature. This finding indicates that the total photodissociation rates are sensitive to the temperature. In addition, the photodissociation rates in the solar radiation field are higher than those in the interstellar radiation fields, indicating that photodissociation rate is associated with the type of radiation field in which the molecule is exposed. The calculated photodissociation cross sections and rates of AlO are useful to investigate the chemical evolution of the aluminum element in the interstellar environment.\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jqsrt.2024.109335\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.jqsrt.2024.109335","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Absorption spectroscopy of AlO including photodissociation
Photodissociation of AlO may be important for the aluminium chemistry in various astrophysical regions. The photodissociation cross sections and rates of AlO were investigated over the temperature range from 0 to 15000 K in this work. Firstly, the state-resolved cross sections at the wavelength of 50 − 5000 nm for transitions from the ground and first excited states were calculated using ab initio potential energy curves and transition dipole moments. The temperature-dependent cross sections were then obtained by assuming a Boltzmann distribution to describe the population of the initial state. Several common radiation fields (interstellar, solar and blackbody radiation field) were selected as the radiation fields, and then the photodissociation rates in different radiation fields were obtained. The photodissociation rates in all studied radiation fields exhibit a positive correlation with increasing temperature. This finding indicates that the total photodissociation rates are sensitive to the temperature. In addition, the photodissociation rates in the solar radiation field are higher than those in the interstellar radiation fields, indicating that photodissociation rate is associated with the type of radiation field in which the molecule is exposed. The calculated photodissociation cross sections and rates of AlO are useful to investigate the chemical evolution of the aluminum element in the interstellar environment.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.