{"title":"混合数据驱动的桥梁动态称重技术,采用两级顺序人工神经网络","authors":"Wangchen Yan, Hao Ren, Xin Luo, Shaofan Li","doi":"10.1111/mice.13415","DOIUrl":null,"url":null,"abstract":"For existing bridge weigh-in-motion technologies, the main challenge in accurate weight estimation is to overcome the difficulty of identifying the closely spaced axles. To do so, many field test data are generally required for each bridge in application. To address such a challenge, a novel two-level sequential artificial neural network (ANN) model trained by the hybrid simulated-experimental data was proposed in this study to identify the gross weight and axle weight. For this, simulations and scaled experiments were conducted for the vehicle–bridge interaction system to develop the sequential ANN model. The sequential ANN model was realized by a special data looping strategy, in which the outputs of the global-level ANN served as partial inputs to the following local-level ANN to predict the axle weight. The optimized size of the training data and the appropriate hybrid ratio of the sequential ANN model were also explored. Finally, the proposed algorithm was applied to a real bridge application via transfer learning, as the optimized hybrid sequential ANN model serves as the pre-trained model. The results showed that for the small training datasets with only 5% experimental data, the proposed algorithm significantly improved the accuracy in weight estimation of moving vehicles with closely spaced axles. The field test demonstrated that the proposed algorithm also applies to different bridges within a gross weight identification error of 5%, showing the promise of the proposed algorithm in practical applications.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"1 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid-data-driven bridge weigh-in-motion technology using a two-level sequential artificial neural network\",\"authors\":\"Wangchen Yan, Hao Ren, Xin Luo, Shaofan Li\",\"doi\":\"10.1111/mice.13415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For existing bridge weigh-in-motion technologies, the main challenge in accurate weight estimation is to overcome the difficulty of identifying the closely spaced axles. To do so, many field test data are generally required for each bridge in application. To address such a challenge, a novel two-level sequential artificial neural network (ANN) model trained by the hybrid simulated-experimental data was proposed in this study to identify the gross weight and axle weight. For this, simulations and scaled experiments were conducted for the vehicle–bridge interaction system to develop the sequential ANN model. The sequential ANN model was realized by a special data looping strategy, in which the outputs of the global-level ANN served as partial inputs to the following local-level ANN to predict the axle weight. The optimized size of the training data and the appropriate hybrid ratio of the sequential ANN model were also explored. Finally, the proposed algorithm was applied to a real bridge application via transfer learning, as the optimized hybrid sequential ANN model serves as the pre-trained model. The results showed that for the small training datasets with only 5% experimental data, the proposed algorithm significantly improved the accuracy in weight estimation of moving vehicles with closely spaced axles. The field test demonstrated that the proposed algorithm also applies to different bridges within a gross weight identification error of 5%, showing the promise of the proposed algorithm in practical applications.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13415\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13415","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Hybrid-data-driven bridge weigh-in-motion technology using a two-level sequential artificial neural network
For existing bridge weigh-in-motion technologies, the main challenge in accurate weight estimation is to overcome the difficulty of identifying the closely spaced axles. To do so, many field test data are generally required for each bridge in application. To address such a challenge, a novel two-level sequential artificial neural network (ANN) model trained by the hybrid simulated-experimental data was proposed in this study to identify the gross weight and axle weight. For this, simulations and scaled experiments were conducted for the vehicle–bridge interaction system to develop the sequential ANN model. The sequential ANN model was realized by a special data looping strategy, in which the outputs of the global-level ANN served as partial inputs to the following local-level ANN to predict the axle weight. The optimized size of the training data and the appropriate hybrid ratio of the sequential ANN model were also explored. Finally, the proposed algorithm was applied to a real bridge application via transfer learning, as the optimized hybrid sequential ANN model serves as the pre-trained model. The results showed that for the small training datasets with only 5% experimental data, the proposed algorithm significantly improved the accuracy in weight estimation of moving vehicles with closely spaced axles. The field test demonstrated that the proposed algorithm also applies to different bridges within a gross weight identification error of 5%, showing the promise of the proposed algorithm in practical applications.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.