实用机器学习策略。1 .修正MMFF分子力学模型,更准确地提供柔性有机分子的构象能差异

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2025-01-05 DOI:10.1002/jcc.70016
Thomas Hehre, Philip E. Klunzinger, Bernard Deppmeier, William Ohlinger, Warren Hehre
{"title":"实用机器学习策略。1 .修正MMFF分子力学模型,更准确地提供柔性有机分子的构象能差异","authors":"Thomas Hehre,&nbsp;Philip E. Klunzinger,&nbsp;Bernard Deppmeier,&nbsp;William Ohlinger,&nbsp;Warren Hehre","doi":"10.1002/jcc.70016","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A correction to the MMFF molecular mechanics model, based on a neural network trained to reproduce conformer energy differences obtained from ωB97X-V/6-311+G(2df,2p)[6-311G*]//MMFF calculations is described. It is supported for molecules containing H, C, N, O, F, S, Cl, and Br. The correction adds only slightly to the cost of MMFF, and the resulting corrected model is several orders of magnitude faster than ωB97X-V/6-311+G(2df,2p)[6-311G*]. It properly identifies the lowest energy conformer for 82% of the molecules in a test set of flexible organic molecules (3553 total conformers), compared with 38% for MMFF. While the corrected MMFF model cannot be expected to provide sufficiently accurate Boltzmann weights for use in spectra and property calculations on flexible molecules, it is able to reduce the number of “reasonable” conformers that need to be passed on to more rigorous computational models, that can.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Machine Learning Strategies. I. Correcting the MMFF Molecular Mechanics Model to More Accurately Provide Conformational Energy Differences in Flexible Organic Molecules\",\"authors\":\"Thomas Hehre,&nbsp;Philip E. Klunzinger,&nbsp;Bernard Deppmeier,&nbsp;William Ohlinger,&nbsp;Warren Hehre\",\"doi\":\"10.1002/jcc.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A correction to the MMFF molecular mechanics model, based on a neural network trained to reproduce conformer energy differences obtained from ωB97X-V/6-311+G(2df,2p)[6-311G*]//MMFF calculations is described. It is supported for molecules containing H, C, N, O, F, S, Cl, and Br. The correction adds only slightly to the cost of MMFF, and the resulting corrected model is several orders of magnitude faster than ωB97X-V/6-311+G(2df,2p)[6-311G*]. It properly identifies the lowest energy conformer for 82% of the molecules in a test set of flexible organic molecules (3553 total conformers), compared with 38% for MMFF. While the corrected MMFF model cannot be expected to provide sufficiently accurate Boltzmann weights for use in spectra and property calculations on flexible molecules, it is able to reduce the number of “reasonable” conformers that need to be passed on to more rigorous computational models, that can.</p>\\n </div>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70016\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70016","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

描述了一种基于神经网络的MMFF分子力学模型的修正,该神经网络可以再现从ωB97X-V/6-311+G(2df,2p)[6-311G*]//MMFF计算中得到的共形能差。它支持含有H、C、N、O、F、S、Cl和Br的分子。修正只稍微增加了MMFF的成本,修正后的模型比ωB97X-V/6-311+G(2df,2p)[6-311G*]快了几个数量级。在一组柔性有机分子(总共3553个构象)的测试中,它正确识别了82%的分子的最低能量构象,而MMFF的这一比例为38%。虽然修正后的MMFF模型不能提供足够精确的玻尔兹曼权重,用于柔性分子的光谱和性质计算,但它能够减少需要传递给更严格的计算模型的“合理”构象的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical Machine Learning Strategies. I. Correcting the MMFF Molecular Mechanics Model to More Accurately Provide Conformational Energy Differences in Flexible Organic Molecules

A correction to the MMFF molecular mechanics model, based on a neural network trained to reproduce conformer energy differences obtained from ωB97X-V/6-311+G(2df,2p)[6-311G*]//MMFF calculations is described. It is supported for molecules containing H, C, N, O, F, S, Cl, and Br. The correction adds only slightly to the cost of MMFF, and the resulting corrected model is several orders of magnitude faster than ωB97X-V/6-311+G(2df,2p)[6-311G*]. It properly identifies the lowest energy conformer for 82% of the molecules in a test set of flexible organic molecules (3553 total conformers), compared with 38% for MMFF. While the corrected MMFF model cannot be expected to provide sufficiently accurate Boltzmann weights for use in spectra and property calculations on flexible molecules, it is able to reduce the number of “reasonable” conformers that need to be passed on to more rigorous computational models, that can.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Issue Information Parallelized Tools for the Preparation and Curation of Large Libraries for Virtual Screening Predicting Molecular Energies of Small Organic Molecules With Multi-Fidelity Methods Not Just Another Crystal Field Software Optical Properties and Tautomerism of 2-Carbamido-1,3-Indandione in Ground and Excited States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1