IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Nature Geoscience Pub Date : 2025-01-06 DOI:10.1038/s41561-024-01610-2
Hana Jurikova, Claudio Garbelli, Ross Whiteford, Theodore Reeves, Gemma M. Laker, Volker Liebetrau, Marcus Gutjahr, Anton Eisenhauer, Kotryna Savickaite, Melanie J. Leng, Dawid Adam Iurino, Marco Viaretti, Adam Tomašových, Yuchen Zhang, Wen-qian Wang, G. R. Shi, Shu-zhong Shen, James W. B. Rae, Lucia Angiolini
{"title":"Rapid rise in atmospheric CO2 marked the end of the Late Palaeozoic Ice Age","authors":"Hana Jurikova, Claudio Garbelli, Ross Whiteford, Theodore Reeves, Gemma M. Laker, Volker Liebetrau, Marcus Gutjahr, Anton Eisenhauer, Kotryna Savickaite, Melanie J. Leng, Dawid Adam Iurino, Marco Viaretti, Adam Tomašových, Yuchen Zhang, Wen-qian Wang, G. R. Shi, Shu-zhong Shen, James W. B. Rae, Lucia Angiolini","doi":"10.1038/s41561-024-01610-2","DOIUrl":null,"url":null,"abstract":"Atmospheric CO2 is thought to play a fundamental role in Earth’s climate regulation. Yet, for much of Earth’s geological past, atmospheric CO2 has been poorly constrained, hindering our understanding of transitions between cool and warm climates. Beginning ~370 million years ago in the Late Devonian and ending ~260 million years ago in the Permian, the Late Palaeozoic Ice Age was the last major glaciation preceding the current Late Cenozoic Ice Age and possibly the most intense glaciation witnessed by complex lifeforms. From the onset of the main phase of the Late Palaeozoic Ice Age in the mid-Mississippian ~330 million years ago, the Earth is thought to have sustained glacial conditions, with continental ice accumulating in high to mid-latitudes. Here we present an 80-million-year-long boron isotope record within a proxy framework for robust quantification of CO2. Our record reveals that the main phase of the Late Palaeozoic Ice Age glaciation was maintained by prolonged low CO2, unprecedented in Earth’s history. About 294 million years ago, atmospheric CO2 rose abruptly (4-fold), releasing the Earth from its penultimate ice age and transforming the Early Permian into a warmer world. A pronounced increase in atmospheric CO2 coincided with warming at the end of the Late Palaeozoic Ice Age, according to an 80-million-year-long boron isotope CO2 proxy record.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"18 1","pages":"91-97"},"PeriodicalIF":15.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-024-01610-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01610-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大气中的二氧化碳被认为在地球的气候调节中起着根本性的作用。然而,在地球地质历史的大部分时间里,大气中二氧化碳的含量一直很低,这阻碍了我们对冷暖气候过渡的理解。晚古生代冰河期始于距今约 3.7 亿年前的晚泥盆纪,结束于距今约 2.6 亿年前的二叠纪,是当前晚新生代冰河期之前的最后一次大冰河期,也可能是复杂生命形式见证的最强烈的冰河期。从距今约3.3亿年前的密西西比中期晚古生代冰期的主要阶段开始,地球被认为一直维持着冰川状态,大陆冰在高纬度到中纬度地区积聚。在这里,我们在一个替代框架内展示了长达 8000 万年的硼同位素记录,以便对二氧化碳进行可靠的量化。我们的记录显示,晚古生代冰川期的主要阶段是由地球历史上前所未有的长期低二氧化碳维持的。大约 2.94 亿年前,大气中的 CO2 突然上升(4 倍),地球从倒数第二个冰期中解脱出来,早二叠世变成了一个更温暖的世界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid rise in atmospheric CO2 marked the end of the Late Palaeozoic Ice Age
Atmospheric CO2 is thought to play a fundamental role in Earth’s climate regulation. Yet, for much of Earth’s geological past, atmospheric CO2 has been poorly constrained, hindering our understanding of transitions between cool and warm climates. Beginning ~370 million years ago in the Late Devonian and ending ~260 million years ago in the Permian, the Late Palaeozoic Ice Age was the last major glaciation preceding the current Late Cenozoic Ice Age and possibly the most intense glaciation witnessed by complex lifeforms. From the onset of the main phase of the Late Palaeozoic Ice Age in the mid-Mississippian ~330 million years ago, the Earth is thought to have sustained glacial conditions, with continental ice accumulating in high to mid-latitudes. Here we present an 80-million-year-long boron isotope record within a proxy framework for robust quantification of CO2. Our record reveals that the main phase of the Late Palaeozoic Ice Age glaciation was maintained by prolonged low CO2, unprecedented in Earth’s history. About 294 million years ago, atmospheric CO2 rose abruptly (4-fold), releasing the Earth from its penultimate ice age and transforming the Early Permian into a warmer world. A pronounced increase in atmospheric CO2 coincided with warming at the end of the Late Palaeozoic Ice Age, according to an 80-million-year-long boron isotope CO2 proxy record.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
期刊最新文献
Author Correction: Recent uplift of Chomolungma enhanced by river drainage piracy Author Correction: An ongoing satellite–ring cycle of Mars and the origins of Phobos and Deimos Episodic warm climates on early Mars primed by crustal hydration Magma composition drives tremors during a volcanic eruption Outer planet frontier of geoscience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1