全氟萘烷对微电极阵列上神经元组织的绝缘压缩增强了电生理测量。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-01-05 DOI:10.1002/adhm.202403771
Tomoya Duenki, Yoshiho Ikeuchi
{"title":"全氟萘烷对微电极阵列上神经元组织的绝缘压缩增强了电生理测量。","authors":"Tomoya Duenki, Yoshiho Ikeuchi","doi":"10.1002/adhm.202403771","DOIUrl":null,"url":null,"abstract":"<p><p>Microelectrode array (MEA) techniques provide a powerful method for exploration of neural network dynamics. A critical challenge is to interface 3D neural tissues including neural organoids with the flat MEAs surface, as it is essential to place neurons near to the electrodes for recording weak extracellular signals of neurons. To enhance performance of MEAs, most research have focused on improving their surface treatment, while little attention has been given to improve the tissue-MEA interactions from the medium side. Here, a strategy is introduced to augment MEA measurements by overlaying perfluorodecalin (PFD), a biocompatible fluorinated solvent, over neural tissues. Laying PFD over cerebral organoids insulates and compresses the tissues on MEA, which significantly enhances electrophysiological recordings. Even subtle signals such as the propagation of action potentials in bundled axons of motor nerve organoids can be detected with the technique. Moreover, PFD stabilizes tissues in acute recordings and its transparency allows optogenetic manipulations. This research highlights the potential of PFD as a tool for refining electrophysiological measurements of in vitro neuronal cultures. This can open new avenues to leverage precision of neuroscientific investigations and expanding the toolkit for in vitro studies of neural function and connectivity.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403771"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insulative Compression of Neuronal Tissues on Microelectrode Arrays by Perfluorodecalin Enhances Electrophysiological Measurements.\",\"authors\":\"Tomoya Duenki, Yoshiho Ikeuchi\",\"doi\":\"10.1002/adhm.202403771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microelectrode array (MEA) techniques provide a powerful method for exploration of neural network dynamics. A critical challenge is to interface 3D neural tissues including neural organoids with the flat MEAs surface, as it is essential to place neurons near to the electrodes for recording weak extracellular signals of neurons. To enhance performance of MEAs, most research have focused on improving their surface treatment, while little attention has been given to improve the tissue-MEA interactions from the medium side. Here, a strategy is introduced to augment MEA measurements by overlaying perfluorodecalin (PFD), a biocompatible fluorinated solvent, over neural tissues. Laying PFD over cerebral organoids insulates and compresses the tissues on MEA, which significantly enhances electrophysiological recordings. Even subtle signals such as the propagation of action potentials in bundled axons of motor nerve organoids can be detected with the technique. Moreover, PFD stabilizes tissues in acute recordings and its transparency allows optogenetic manipulations. This research highlights the potential of PFD as a tool for refining electrophysiological measurements of in vitro neuronal cultures. This can open new avenues to leverage precision of neuroscientific investigations and expanding the toolkit for in vitro studies of neural function and connectivity.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2403771\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202403771\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403771","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

微电极阵列(MEA)技术为神经网络动力学研究提供了一种强有力的方法。一个关键的挑战是将3D神经组织(包括神经类器官)与平坦的MEAs表面连接起来,因为将神经元放置在电极附近以记录神经元的弱细胞外信号是必不可少的。为了提高mea的性能,大多数研究都集中在改善其表面处理上,而很少有人从介质方面改善组织- mea的相互作用。在这里,介绍了一种通过在神经组织上覆盖全氟十氢化萘(PFD)(一种生物相容性氟化溶剂)来增加MEA测量的策略。在脑类器官上铺设PFD可以隔离和压缩MEA上的组织,从而显著增强电生理记录。该技术甚至可以检测到运动神经类器官束束轴突中动作电位的传播等细微信号。此外,PFD在急性记录中稳定组织,其透明度允许光遗传操作。这项研究强调了PFD作为一种改进体外神经元培养电生理测量工具的潜力。这可以开辟新的途径,以利用神经科学研究的准确性,并扩大神经功能和连通性的体外研究工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insulative Compression of Neuronal Tissues on Microelectrode Arrays by Perfluorodecalin Enhances Electrophysiological Measurements.

Microelectrode array (MEA) techniques provide a powerful method for exploration of neural network dynamics. A critical challenge is to interface 3D neural tissues including neural organoids with the flat MEAs surface, as it is essential to place neurons near to the electrodes for recording weak extracellular signals of neurons. To enhance performance of MEAs, most research have focused on improving their surface treatment, while little attention has been given to improve the tissue-MEA interactions from the medium side. Here, a strategy is introduced to augment MEA measurements by overlaying perfluorodecalin (PFD), a biocompatible fluorinated solvent, over neural tissues. Laying PFD over cerebral organoids insulates and compresses the tissues on MEA, which significantly enhances electrophysiological recordings. Even subtle signals such as the propagation of action potentials in bundled axons of motor nerve organoids can be detected with the technique. Moreover, PFD stabilizes tissues in acute recordings and its transparency allows optogenetic manipulations. This research highlights the potential of PFD as a tool for refining electrophysiological measurements of in vitro neuronal cultures. This can open new avenues to leverage precision of neuroscientific investigations and expanding the toolkit for in vitro studies of neural function and connectivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
A Dual-Pipeline Lactate Removal Strategy to Reverse Vascular Hyperpermeability for the Management of Lipopolysaccharide-Induced Sepsis. Bioengineering Strategies for Treating Neointimal Hyperplasia in Peripheral Vasculature: Innovations and Challenges. Bioprinted Micro-Clots for Kinetic Analysis of Endothelial Cell-Mediated Fibrinolysis. Bioprinting Perfusable and Vascularized Skeletal Muscle Flaps for the Treatment of Volumetric Muscle Loss. Facile Fabrication of Injectable Multifunctional Hydrogels Based on Gallium-Polyphenol Networks with Superior Antibacterial Activity for Promoting Infected Wound Healing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1