磁性引导钴铁氧体/负载阿霉素的ros响应胆红素纳米颗粒在结肠癌模型中的抗癌作用。

IF 5.4 2区 医学 Q1 BIOPHYSICS Colloids and Surfaces B: Biointerfaces Pub Date : 2025-04-01 Epub Date: 2024-12-28 DOI:10.1016/j.colsurfb.2024.114487
Hyo Kang, Reju George Thomas, Subin Kim, Jae Kyun Ju, Yong Yeon Jeong
{"title":"磁性引导钴铁氧体/负载阿霉素的ros响应胆红素纳米颗粒在结肠癌模型中的抗癌作用。","authors":"Hyo Kang, Reju George Thomas, Subin Kim, Jae Kyun Ju, Yong Yeon Jeong","doi":"10.1016/j.colsurfb.2024.114487","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study is to synthesize the cobalt iron oxide (CoFe) and doxorubicin (Dox)-loaded chitosan bilirubin (ChiBil) nanoparticles and to investigate the anticancer therapeutic effect of the synthesized nanoparticles under magnetic guidance in a colon cancer.</p><p><strong>Materials and methods: </strong>ChiBil-CoFe-Dox nanoparticles were synthesized by conjugating CoFe and Dox and then loaded onto ChiBil nanoparticles. Synthesis were characterized using thermogravimetric (TGA) analysis, inductive coupled plasma (ICP) analysis, dynamic light scattering (DLS), zeta potential and field emission-transmission electron microscopy (FE-TEM). Cellular uptake and cytotoxicity studies were conducted in vitro. Biodistribution and tumor inhibition study was done in vivo CT-26 colon cancer model.</p><p><strong>Results: </strong>The ChiBil-CoFe-Dox nanoparticles were successfully synthesized in this study. The in vitro cytotoxicity study showed that the ChiBil-CoFe-Dox nanoparticle had a toxic effect on cancer cells. The accumulation of ChiBil-CoFe-Dox nanoparticles was enhanced under magnetic guidance, as observed by in vivo. Tumor inhibition study showed that the ChiBil-CoFe-Dox nanoparticle effectively reduced tumor size in vivo mice colon cancer model, especially when combined with magnetic guidance.</p><p><strong>Conclusion: </strong>This study showed that ChiBil-CoFe-Dox nanoparticle was successfully synthesized and effectively reduced tumor size, especially when combined with magnetic guidance. The in vitro and in vivo results suggested that the ROS stimuli responsive ChiBil-CoFe-Dox nanoparticles may be a potent therapeutic option for treating colon cancer.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"248 ","pages":"114487"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anticancer therapeutic effect of magnetic guided cobalt ferrite/doxorubicin-loaded ROS-responsive bilirubin nanoparticles in a colon cancer model.\",\"authors\":\"Hyo Kang, Reju George Thomas, Subin Kim, Jae Kyun Ju, Yong Yeon Jeong\",\"doi\":\"10.1016/j.colsurfb.2024.114487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The aim of this study is to synthesize the cobalt iron oxide (CoFe) and doxorubicin (Dox)-loaded chitosan bilirubin (ChiBil) nanoparticles and to investigate the anticancer therapeutic effect of the synthesized nanoparticles under magnetic guidance in a colon cancer.</p><p><strong>Materials and methods: </strong>ChiBil-CoFe-Dox nanoparticles were synthesized by conjugating CoFe and Dox and then loaded onto ChiBil nanoparticles. Synthesis were characterized using thermogravimetric (TGA) analysis, inductive coupled plasma (ICP) analysis, dynamic light scattering (DLS), zeta potential and field emission-transmission electron microscopy (FE-TEM). Cellular uptake and cytotoxicity studies were conducted in vitro. Biodistribution and tumor inhibition study was done in vivo CT-26 colon cancer model.</p><p><strong>Results: </strong>The ChiBil-CoFe-Dox nanoparticles were successfully synthesized in this study. The in vitro cytotoxicity study showed that the ChiBil-CoFe-Dox nanoparticle had a toxic effect on cancer cells. The accumulation of ChiBil-CoFe-Dox nanoparticles was enhanced under magnetic guidance, as observed by in vivo. Tumor inhibition study showed that the ChiBil-CoFe-Dox nanoparticle effectively reduced tumor size in vivo mice colon cancer model, especially when combined with magnetic guidance.</p><p><strong>Conclusion: </strong>This study showed that ChiBil-CoFe-Dox nanoparticle was successfully synthesized and effectively reduced tumor size, especially when combined with magnetic guidance. The in vitro and in vivo results suggested that the ROS stimuli responsive ChiBil-CoFe-Dox nanoparticles may be a potent therapeutic option for treating colon cancer.</p>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"248 \",\"pages\":\"114487\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.colsurfb.2024.114487\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114487","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:合成负载氧化铁钴(CoFe)和多柔比星(Dox)的壳聚糖胆红素(ChiBil)纳米粒子,并研究其在磁性引导下对结肠癌的抗癌治疗作用。材料和方法:将CoFe和Dox偶联合成ChiBil-CoFe-Dox纳米颗粒,并将其负载到ChiBil纳米颗粒上。采用热重分析(TGA)、电感耦合等离子体(ICP)、动态光散射(DLS)、zeta电位和场发射透射电镜(FE-TEM)对合成过程进行了表征。体外进行了细胞摄取和细胞毒性研究。在体内CT-26结肠癌模型中进行生物分布和肿瘤抑制研究。结果:本研究成功合成了chibill - cofe - dox纳米颗粒。体外细胞毒性研究表明,纳米颗粒对肿瘤细胞具有一定的毒性作用。在体内观察到,磁引导下ChiBil-CoFe-Dox纳米颗粒的积累增强。肿瘤抑制研究表明,ChiBil-CoFe-Dox纳米颗粒可有效降低小鼠结肠癌模型体内肿瘤大小,特别是与磁导结合时。结论:本研究成功合成了ChiBil-CoFe-Dox纳米颗粒,并能有效减小肿瘤大小,特别是与磁导结合使用时。体外和体内实验结果表明,对活性氧刺激有反应的chibill - cofe - dox纳米颗粒可能是治疗结肠癌的有效选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anticancer therapeutic effect of magnetic guided cobalt ferrite/doxorubicin-loaded ROS-responsive bilirubin nanoparticles in a colon cancer model.

Purpose: The aim of this study is to synthesize the cobalt iron oxide (CoFe) and doxorubicin (Dox)-loaded chitosan bilirubin (ChiBil) nanoparticles and to investigate the anticancer therapeutic effect of the synthesized nanoparticles under magnetic guidance in a colon cancer.

Materials and methods: ChiBil-CoFe-Dox nanoparticles were synthesized by conjugating CoFe and Dox and then loaded onto ChiBil nanoparticles. Synthesis were characterized using thermogravimetric (TGA) analysis, inductive coupled plasma (ICP) analysis, dynamic light scattering (DLS), zeta potential and field emission-transmission electron microscopy (FE-TEM). Cellular uptake and cytotoxicity studies were conducted in vitro. Biodistribution and tumor inhibition study was done in vivo CT-26 colon cancer model.

Results: The ChiBil-CoFe-Dox nanoparticles were successfully synthesized in this study. The in vitro cytotoxicity study showed that the ChiBil-CoFe-Dox nanoparticle had a toxic effect on cancer cells. The accumulation of ChiBil-CoFe-Dox nanoparticles was enhanced under magnetic guidance, as observed by in vivo. Tumor inhibition study showed that the ChiBil-CoFe-Dox nanoparticle effectively reduced tumor size in vivo mice colon cancer model, especially when combined with magnetic guidance.

Conclusion: This study showed that ChiBil-CoFe-Dox nanoparticle was successfully synthesized and effectively reduced tumor size, especially when combined with magnetic guidance. The in vitro and in vivo results suggested that the ROS stimuli responsive ChiBil-CoFe-Dox nanoparticles may be a potent therapeutic option for treating colon cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
期刊最新文献
Corrigendum to "Sodium alginate hydrogel containing platelet-rich plasma for wound healing" [Colloids Surf. B Biointerfaces 222 (2023) 113096]. Stimuli-responsive dual-drug loaded microspheres with differential drug release for antibacterial and wound repair promotion. Corrigendum to "Preparation of antibacterial hydrogel from poly(aspartic hydrazide) and quaternized N-[3-(dimethylamino) propyl] methylacrylamide copolymer with antioxidant and hemostatic effects for wound repairing" [Colloids Surf. B Biointerfaces 238 (2024) 113881]. Corrigendum to 'One-pot synthesis of chlorhexidine-templated biodegradable mesoporous organosilica nanoantiseptics' [Colloid. Surf. B: Biointerfaces 187(2019)110653]. Sensitive electrochemical detection of glycated hemoglobin (HbA1c) using cobalt metal-organic framework/two-dimensional molybdenum diselenide nanocomposite-based immunosensors amplified by polyoxometalate/DNA aptamer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1