槲皮素衍生物通过抑制RSK2激酶和醛糖还原酶抑制细胞增殖:UPLC-MS/MS、GC-MS、体外和计算研究。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2025-01-06 DOI:10.1007/s12010-024-05134-8
Doaa S Ali, Alaadin E El-Haddad, Hussein S Mohamed, Ashraf A El-Bassuony, Momtaz M Hegab, Gehad AbdElgayed, Hossam Ebaid, Shimaa A Ahmed, Emadeldin M Kamel
{"title":"槲皮素衍生物通过抑制RSK2激酶和醛糖还原酶抑制细胞增殖:UPLC-MS/MS、GC-MS、体外和计算研究。","authors":"Doaa S Ali, Alaadin E El-Haddad, Hussein S Mohamed, Ashraf A El-Bassuony, Momtaz M Hegab, Gehad AbdElgayed, Hossam Ebaid, Shimaa A Ahmed, Emadeldin M Kamel","doi":"10.1007/s12010-024-05134-8","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally, Bidens pilosa L. is an edible herb utilized for various ailments. The study accomplished a complete analysis of B. pilosa extract including UPLC/T-TOF-MS/MS, GC-MS, and in vitro antiproliferative activity, in addition to molecular docking on kinase and aldose reductase enzymes. From GC-MS analysis, the percentage of identified unsaturated fatty acids (FAs) (11.38%) was greater than saturated FAs (8.69%), while the sterols percent (39.92%) was higher than the hydrocarbons percent (6.6%). Oleic and palmitic acids are the major FAs (9.48% and 6.14%, respectively). Phytochemical profile uncovered the presence of quercetin, kaempferol, myricetin, and isorhamnetin aglycones and/or glycoside derivatives alongside apigenin, acacetin, and luteolin derivatives. B. pilosa extract suppressed cell proliferation in a concentration-dependent manner against SNB-19 and SK-MEL-5 cell lines (IC<sub>50</sub> 1.66 ± 0.06 and 4.04 ± 0.14 mg/mL, respectively). These potentials aligned with the molecular docking results on aldose reductase and kinase enzymes with promising binding affinities (- 5.3 to - 8.89 kcal mol<sup>-1</sup>). B. pilosa metabolites were found as kinases and aldose reductase inhibitors, which rationalize their antiproliferative activity. Unfortunately, toxicity assessments were not performed to assess the safety of B. pilosa extract. Assessment of the therapeutic efficiency via in vivo and clinical studies is required.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quercetin Derivatives from Bidens pilosa Suppressed Cell Proliferation via Inhibition of RSK2 Kinase and Aldose Reductase Enzymes: UPLC-MS/MS, GC-MS, In Vitro, and Computational Studies.\",\"authors\":\"Doaa S Ali, Alaadin E El-Haddad, Hussein S Mohamed, Ashraf A El-Bassuony, Momtaz M Hegab, Gehad AbdElgayed, Hossam Ebaid, Shimaa A Ahmed, Emadeldin M Kamel\",\"doi\":\"10.1007/s12010-024-05134-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditionally, Bidens pilosa L. is an edible herb utilized for various ailments. The study accomplished a complete analysis of B. pilosa extract including UPLC/T-TOF-MS/MS, GC-MS, and in vitro antiproliferative activity, in addition to molecular docking on kinase and aldose reductase enzymes. From GC-MS analysis, the percentage of identified unsaturated fatty acids (FAs) (11.38%) was greater than saturated FAs (8.69%), while the sterols percent (39.92%) was higher than the hydrocarbons percent (6.6%). Oleic and palmitic acids are the major FAs (9.48% and 6.14%, respectively). Phytochemical profile uncovered the presence of quercetin, kaempferol, myricetin, and isorhamnetin aglycones and/or glycoside derivatives alongside apigenin, acacetin, and luteolin derivatives. B. pilosa extract suppressed cell proliferation in a concentration-dependent manner against SNB-19 and SK-MEL-5 cell lines (IC<sub>50</sub> 1.66 ± 0.06 and 4.04 ± 0.14 mg/mL, respectively). These potentials aligned with the molecular docking results on aldose reductase and kinase enzymes with promising binding affinities (- 5.3 to - 8.89 kcal mol<sup>-1</sup>). B. pilosa metabolites were found as kinases and aldose reductase inhibitors, which rationalize their antiproliferative activity. Unfortunately, toxicity assessments were not performed to assess the safety of B. pilosa extract. Assessment of the therapeutic efficiency via in vivo and clinical studies is required.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05134-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05134-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统上,拜登是一种可食用的草药,用于治疗各种疾病。本研究通过UPLC/T-TOF-MS/MS、GC-MS、体外抗增殖活性、激酶和醛糖还原酶的分子对接等方法,完成了对枇杷叶提取物的完整分析。通过GC-MS分析,鉴定出的不饱和脂肪酸(FAs)的比例(11.38%)大于饱和脂肪酸(8.69%),而甾醇的比例(39.92%)高于烃类的比例(6.6%)。油酸和棕榈酸是主要的脂肪酸(分别为9.48%和6.14%)。植物化学分析揭示了槲皮素、山奈酚、杨梅素和异鼠李素苷元和/或糖苷衍生物与芹菜素、阿卡乙素和木犀草素衍生物的存在。毛缕草提取物对SNB-19和SK-MEL-5细胞株的抑制作用呈浓度依赖性(IC50分别为1.66±0.06和4.04±0.14 mg/mL)。这些电位与醛糖还原酶和激酶的分子对接结果一致,具有良好的结合亲和力(- 5.3至- 8.89 kcal mol-1)。其代谢产物被发现为激酶和醛糖还原酶抑制剂,这使其抗增殖活性合理化。不幸的是,没有进行毒性评估来评估刺槐提取物的安全性。需要通过体内和临床研究来评估治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quercetin Derivatives from Bidens pilosa Suppressed Cell Proliferation via Inhibition of RSK2 Kinase and Aldose Reductase Enzymes: UPLC-MS/MS, GC-MS, In Vitro, and Computational Studies.

Traditionally, Bidens pilosa L. is an edible herb utilized for various ailments. The study accomplished a complete analysis of B. pilosa extract including UPLC/T-TOF-MS/MS, GC-MS, and in vitro antiproliferative activity, in addition to molecular docking on kinase and aldose reductase enzymes. From GC-MS analysis, the percentage of identified unsaturated fatty acids (FAs) (11.38%) was greater than saturated FAs (8.69%), while the sterols percent (39.92%) was higher than the hydrocarbons percent (6.6%). Oleic and palmitic acids are the major FAs (9.48% and 6.14%, respectively). Phytochemical profile uncovered the presence of quercetin, kaempferol, myricetin, and isorhamnetin aglycones and/or glycoside derivatives alongside apigenin, acacetin, and luteolin derivatives. B. pilosa extract suppressed cell proliferation in a concentration-dependent manner against SNB-19 and SK-MEL-5 cell lines (IC50 1.66 ± 0.06 and 4.04 ± 0.14 mg/mL, respectively). These potentials aligned with the molecular docking results on aldose reductase and kinase enzymes with promising binding affinities (- 5.3 to - 8.89 kcal mol-1). B. pilosa metabolites were found as kinases and aldose reductase inhibitors, which rationalize their antiproliferative activity. Unfortunately, toxicity assessments were not performed to assess the safety of B. pilosa extract. Assessment of the therapeutic efficiency via in vivo and clinical studies is required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
Correction to: Evaluation and Optimization of the Different Process Parameters of Mild Acid Pretreatment of Waste Lignocellulosic Biomass for Enhanced Energy Procreation. Excellent Laccase Mimic Activity of Cu-Melamine and Its Applications in the Degradation of Congo Red. Identification of PIF1 as a Ferroptosis-Related Prognostic Biomarker Correlated with Immune Infiltration in Hepatocellular Carcinoma. Targeted Delivery of SmacN7 Peptide Induces Immunogenic Cell Death in Cervical Cancer Treatment. Valorization of Cocoa and Peach-Palm Wastes for the Production of Amylases by Pleurotus pulmonarius CCB19 and Its Application as an Additive in Commercial Detergents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1