Nastaran Hamedi, Jesús S García-Salinas, Brent M Berry, Gregory A Worrell, Michal T Kucewicz
{"title":"前前额叶脑电图θ活动显示癫痫患者的记忆和执行功能。","authors":"Nastaran Hamedi, Jesús S García-Salinas, Brent M Berry, Gregory A Worrell, Michal T Kucewicz","doi":"10.1111/epi.18246","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Cognitive deficits are one of the most debilitating comorbidities in epilepsy and other neurodegenerative, neuropsychiatric, and neurodevelopmental brain disorders. Current diagnostic and therapeutic options are limited and lack objective measures of the underlying neural activities. In this study, electrophysiological biomarkers that reflect cognitive functions in clinically validated batteries were determined to aid diagnosis and treatment in specific brain regions.</p><p><strong>Methods: </strong>We employed the Cambridge Neuropsychological Test Automated Battery (CANTAB) tasks to probe memory and executive functions in 86 patients with epilepsy undergoing clinical electroencephalography (EEG) monitoring. EEG electrode signals during performance of particular battery tasks were decomposed to identify specific frequency bands and cortical areas that differentiated patients with impaired, normal, and good standardized performance according to their age and gender.</p><p><strong>Results: </strong>The anterior prefrontal cortical EEG power in the theta frequency band was consistently lower in patients with impaired memory and executive function performance (z-score < -1). This effect was evident in all four behavioral measures of executive, visual, spatial, and working memory functions and was confined to the cortical area of all four frontal pole electrodes (Nz, Fpz, Fp1, and Fp2).</p><p><strong>Significance: </strong>Theta EEG power in the anterior prefrontal cortex provides simple, accessible, and objective electrophysiological measure of memory and executive functions in epilepsy. Our results suggest a feasible clinical biomarker for diagnosis, monitoring, and treatment of cognitive deficits with emerging targeted neuromodulation approaches.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anterior prefrontal EEG theta activities indicate memory and executive functions in patients with epilepsy.\",\"authors\":\"Nastaran Hamedi, Jesús S García-Salinas, Brent M Berry, Gregory A Worrell, Michal T Kucewicz\",\"doi\":\"10.1111/epi.18246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Cognitive deficits are one of the most debilitating comorbidities in epilepsy and other neurodegenerative, neuropsychiatric, and neurodevelopmental brain disorders. Current diagnostic and therapeutic options are limited and lack objective measures of the underlying neural activities. In this study, electrophysiological biomarkers that reflect cognitive functions in clinically validated batteries were determined to aid diagnosis and treatment in specific brain regions.</p><p><strong>Methods: </strong>We employed the Cambridge Neuropsychological Test Automated Battery (CANTAB) tasks to probe memory and executive functions in 86 patients with epilepsy undergoing clinical electroencephalography (EEG) monitoring. EEG electrode signals during performance of particular battery tasks were decomposed to identify specific frequency bands and cortical areas that differentiated patients with impaired, normal, and good standardized performance according to their age and gender.</p><p><strong>Results: </strong>The anterior prefrontal cortical EEG power in the theta frequency band was consistently lower in patients with impaired memory and executive function performance (z-score < -1). This effect was evident in all four behavioral measures of executive, visual, spatial, and working memory functions and was confined to the cortical area of all four frontal pole electrodes (Nz, Fpz, Fp1, and Fp2).</p><p><strong>Significance: </strong>Theta EEG power in the anterior prefrontal cortex provides simple, accessible, and objective electrophysiological measure of memory and executive functions in epilepsy. Our results suggest a feasible clinical biomarker for diagnosis, monitoring, and treatment of cognitive deficits with emerging targeted neuromodulation approaches.</p>\",\"PeriodicalId\":11768,\"journal\":{\"name\":\"Epilepsia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/epi.18246\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18246","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Anterior prefrontal EEG theta activities indicate memory and executive functions in patients with epilepsy.
Objective: Cognitive deficits are one of the most debilitating comorbidities in epilepsy and other neurodegenerative, neuropsychiatric, and neurodevelopmental brain disorders. Current diagnostic and therapeutic options are limited and lack objective measures of the underlying neural activities. In this study, electrophysiological biomarkers that reflect cognitive functions in clinically validated batteries were determined to aid diagnosis and treatment in specific brain regions.
Methods: We employed the Cambridge Neuropsychological Test Automated Battery (CANTAB) tasks to probe memory and executive functions in 86 patients with epilepsy undergoing clinical electroencephalography (EEG) monitoring. EEG electrode signals during performance of particular battery tasks were decomposed to identify specific frequency bands and cortical areas that differentiated patients with impaired, normal, and good standardized performance according to their age and gender.
Results: The anterior prefrontal cortical EEG power in the theta frequency band was consistently lower in patients with impaired memory and executive function performance (z-score < -1). This effect was evident in all four behavioral measures of executive, visual, spatial, and working memory functions and was confined to the cortical area of all four frontal pole electrodes (Nz, Fpz, Fp1, and Fp2).
Significance: Theta EEG power in the anterior prefrontal cortex provides simple, accessible, and objective electrophysiological measure of memory and executive functions in epilepsy. Our results suggest a feasible clinical biomarker for diagnosis, monitoring, and treatment of cognitive deficits with emerging targeted neuromodulation approaches.
期刊介绍:
Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.