Dong-Hwa Lee, Jee-Woo Choi, Geun-Hyeong Kim, Seung Park, Hyun Jeong Jeon
{"title":"基于多模态的深度学习模型在甲状腺乳头状癌复发预测中的应用。","authors":"Dong-Hwa Lee, Jee-Woo Choi, Geun-Hyeong Kim, Seung Park, Hyun Jeong Jeon","doi":"10.2147/IJGM.S486189","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy. Although its mortality rate is low, some patients experience cancer recurrence during follow-up. In this study, we investigated the accuracy of a novel multimodal model by simultaneously analyzing numeric and time-series data to predict recurrence in patients with PTC after thyroidectomy.</p><p><strong>Patients and methods: </strong>We analyzed patients with thyroid carcinoma who underwent thyroidectomy at the Chungbuk National University Hospital between January 2006 and December 2021. The proposed model used numerical data, including clinical information at the time of surgery, and time-series data, including postoperative thyroid function test results. For the model training with unbalanced data, we employed weighted binary cross-entropy with weights of 0.8 for the positive (recurrence) group and 0.2 for the negative (nonrecurrence) group. We performed four-fold cross-validation of the dataset to evaluate the model performance.</p><p><strong>Results: </strong>Our dataset comprised 1613 patients who underwent thyroidectomy, including 1550 and 63 patients with nonrecurrent and recurrent PTC, respectively. Patients with recurrence had a larger tumor size, more tumor multiplicity, and a higher male-to-female ratio than those without recurrence. The proposed model achieved an average area under the curve of 0.9622, F1-score of 0.4603, sensitivity of 0.9042, and specificity of 0.9077.</p><p><strong>Conclusion: </strong>When applying our proposed model, the experimental results showed that it could predict recurrence at least 1 year before occurrence. The multimodal model for predicting PTC recurrence after thyroidectomy showed good performance. In clinical practice, it may help with the early detection of recurrence during the follow-up of patients with PTC after thyroidectomy.</p>","PeriodicalId":14131,"journal":{"name":"International Journal of General Medicine","volume":"17 ","pages":"6585-6594"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of a Novel Multimodal-Based Deep Learning Model for the Prediction of Papillary Thyroid Carcinoma Recurrence.\",\"authors\":\"Dong-Hwa Lee, Jee-Woo Choi, Geun-Hyeong Kim, Seung Park, Hyun Jeong Jeon\",\"doi\":\"10.2147/IJGM.S486189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy. Although its mortality rate is low, some patients experience cancer recurrence during follow-up. In this study, we investigated the accuracy of a novel multimodal model by simultaneously analyzing numeric and time-series data to predict recurrence in patients with PTC after thyroidectomy.</p><p><strong>Patients and methods: </strong>We analyzed patients with thyroid carcinoma who underwent thyroidectomy at the Chungbuk National University Hospital between January 2006 and December 2021. The proposed model used numerical data, including clinical information at the time of surgery, and time-series data, including postoperative thyroid function test results. For the model training with unbalanced data, we employed weighted binary cross-entropy with weights of 0.8 for the positive (recurrence) group and 0.2 for the negative (nonrecurrence) group. We performed four-fold cross-validation of the dataset to evaluate the model performance.</p><p><strong>Results: </strong>Our dataset comprised 1613 patients who underwent thyroidectomy, including 1550 and 63 patients with nonrecurrent and recurrent PTC, respectively. Patients with recurrence had a larger tumor size, more tumor multiplicity, and a higher male-to-female ratio than those without recurrence. The proposed model achieved an average area under the curve of 0.9622, F1-score of 0.4603, sensitivity of 0.9042, and specificity of 0.9077.</p><p><strong>Conclusion: </strong>When applying our proposed model, the experimental results showed that it could predict recurrence at least 1 year before occurrence. The multimodal model for predicting PTC recurrence after thyroidectomy showed good performance. In clinical practice, it may help with the early detection of recurrence during the follow-up of patients with PTC after thyroidectomy.</p>\",\"PeriodicalId\":14131,\"journal\":{\"name\":\"International Journal of General Medicine\",\"volume\":\"17 \",\"pages\":\"6585-6594\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of General Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJGM.S486189\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJGM.S486189","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Application of a Novel Multimodal-Based Deep Learning Model for the Prediction of Papillary Thyroid Carcinoma Recurrence.
Purpose: Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy. Although its mortality rate is low, some patients experience cancer recurrence during follow-up. In this study, we investigated the accuracy of a novel multimodal model by simultaneously analyzing numeric and time-series data to predict recurrence in patients with PTC after thyroidectomy.
Patients and methods: We analyzed patients with thyroid carcinoma who underwent thyroidectomy at the Chungbuk National University Hospital between January 2006 and December 2021. The proposed model used numerical data, including clinical information at the time of surgery, and time-series data, including postoperative thyroid function test results. For the model training with unbalanced data, we employed weighted binary cross-entropy with weights of 0.8 for the positive (recurrence) group and 0.2 for the negative (nonrecurrence) group. We performed four-fold cross-validation of the dataset to evaluate the model performance.
Results: Our dataset comprised 1613 patients who underwent thyroidectomy, including 1550 and 63 patients with nonrecurrent and recurrent PTC, respectively. Patients with recurrence had a larger tumor size, more tumor multiplicity, and a higher male-to-female ratio than those without recurrence. The proposed model achieved an average area under the curve of 0.9622, F1-score of 0.4603, sensitivity of 0.9042, and specificity of 0.9077.
Conclusion: When applying our proposed model, the experimental results showed that it could predict recurrence at least 1 year before occurrence. The multimodal model for predicting PTC recurrence after thyroidectomy showed good performance. In clinical practice, it may help with the early detection of recurrence during the follow-up of patients with PTC after thyroidectomy.
期刊介绍:
The International Journal of General Medicine is an international, peer-reviewed, open access journal that focuses on general and internal medicine, pathogenesis, epidemiology, diagnosis, monitoring and treatment protocols. The journal is characterized by the rapid reporting of reviews, original research and clinical studies across all disease areas.
A key focus of the journal is the elucidation of disease processes and management protocols resulting in improved outcomes for the patient. Patient perspectives such as satisfaction, quality of life, health literacy and communication and their role in developing new healthcare programs and optimizing clinical outcomes are major areas of interest for the journal.
As of 1st April 2019, the International Journal of General Medicine will no longer consider meta-analyses for publication.