{"title":"drp1依赖的线粒体分裂有助于乳酸诱导的鸡心肌细胞损伤。","authors":"Dongfang Hu, Yunli Cui, Xueke Hou, Xueying Wang, Zihui Shen, Huiqing Pang, Yaming Ge, Hongmei Ning","doi":"10.1002/jbt.70128","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Enhanced glycolysis and elevated lactic acid (LA) production are observed during sudden death syndrome (SDS) in broilers. However, the mechanism underlying LA-induced cardiomyocyte damage and heart failure in fast-growing broilers remains unclear. In this study, chicken embryo cardiomyocytes (CECs) were cultured and treated with LA to investigate LA-induced CEC injury and its mechanism, aiming to develop strategies to prevent LA-induced SDS in broilers. Results showed that LA inhibited CEC proliferation and contraction whereas inducing apoptosis. Furthermore, LA disrupted mitochondrial ultrastructure, reduced mitochondrial membrane potential, activated mitophagy, and disturbed mitochondrial dynamics. Treatment with Mdivi-1, a selective Drp1 inhibitor, improved CEC viability, restored mitochondrial network integrity, reduced reactive oxygen species production, and inhibited LA-induced apoptosis. These findings suggest that LA-induced cardiomyocyte injury during SDS in broilers is associated with mitochondrial damage and increased mitochondrial fission. The inhibition of mitochondrial hyperfission by Mdivi-1 effectively preserves CEC morphology, structure, and function, playing a critical role in preventing LA-induced damage. This study provides a foundation for strategies to prevent and control SDS in broilers.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drp1-Dependent Mitochondrial Fission Contributes to Lactic Acid-Induced Chicken Cardiomyocyte Damage\",\"authors\":\"Dongfang Hu, Yunli Cui, Xueke Hou, Xueying Wang, Zihui Shen, Huiqing Pang, Yaming Ge, Hongmei Ning\",\"doi\":\"10.1002/jbt.70128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Enhanced glycolysis and elevated lactic acid (LA) production are observed during sudden death syndrome (SDS) in broilers. However, the mechanism underlying LA-induced cardiomyocyte damage and heart failure in fast-growing broilers remains unclear. In this study, chicken embryo cardiomyocytes (CECs) were cultured and treated with LA to investigate LA-induced CEC injury and its mechanism, aiming to develop strategies to prevent LA-induced SDS in broilers. Results showed that LA inhibited CEC proliferation and contraction whereas inducing apoptosis. Furthermore, LA disrupted mitochondrial ultrastructure, reduced mitochondrial membrane potential, activated mitophagy, and disturbed mitochondrial dynamics. Treatment with Mdivi-1, a selective Drp1 inhibitor, improved CEC viability, restored mitochondrial network integrity, reduced reactive oxygen species production, and inhibited LA-induced apoptosis. These findings suggest that LA-induced cardiomyocyte injury during SDS in broilers is associated with mitochondrial damage and increased mitochondrial fission. The inhibition of mitochondrial hyperfission by Mdivi-1 effectively preserves CEC morphology, structure, and function, playing a critical role in preventing LA-induced damage. This study provides a foundation for strategies to prevent and control SDS in broilers.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70128\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70128","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Drp1-Dependent Mitochondrial Fission Contributes to Lactic Acid-Induced Chicken Cardiomyocyte Damage
Enhanced glycolysis and elevated lactic acid (LA) production are observed during sudden death syndrome (SDS) in broilers. However, the mechanism underlying LA-induced cardiomyocyte damage and heart failure in fast-growing broilers remains unclear. In this study, chicken embryo cardiomyocytes (CECs) were cultured and treated with LA to investigate LA-induced CEC injury and its mechanism, aiming to develop strategies to prevent LA-induced SDS in broilers. Results showed that LA inhibited CEC proliferation and contraction whereas inducing apoptosis. Furthermore, LA disrupted mitochondrial ultrastructure, reduced mitochondrial membrane potential, activated mitophagy, and disturbed mitochondrial dynamics. Treatment with Mdivi-1, a selective Drp1 inhibitor, improved CEC viability, restored mitochondrial network integrity, reduced reactive oxygen species production, and inhibited LA-induced apoptosis. These findings suggest that LA-induced cardiomyocyte injury during SDS in broilers is associated with mitochondrial damage and increased mitochondrial fission. The inhibition of mitochondrial hyperfission by Mdivi-1 effectively preserves CEC morphology, structure, and function, playing a critical role in preventing LA-induced damage. This study provides a foundation for strategies to prevent and control SDS in broilers.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.