Yongze Liu, Mei Li, Genyuan Li, Lei He, Xiaofeng Ma, Zhaoxiang Zhang, Jun Zhang
{"title":"快速自交联海藻酸钠水凝胶用于感染伤口。","authors":"Yongze Liu, Mei Li, Genyuan Li, Lei He, Xiaofeng Ma, Zhaoxiang Zhang, Jun Zhang","doi":"10.1080/09205063.2024.2438497","DOIUrl":null,"url":null,"abstract":"<p><p>The risks associated with wound infections are significant, making a snug-fitting hydrogel dressing an optimal choice for wound management. For it, we employed the self-cross-linking method of oxidized sodium alginate (SCSA), incorporating clarithromycin (Cla) and basic fibroblast growth factor (bFGF) to formulate a rapidly forming, bacteriostatic, and wound-healing hydrogel (SCSA@C/b). Bacteriostatic and cytocompatibility assays demonstrated that SCSA@C/b exhibits exceptional antibacterial activity alongside strong biocompatibility. A fractional infected wound model showed that SCSA@C/b accelerated healing of infected wounds by approximately three days compared to the healing time of the control group, with nearly complete wound recovery. H&E staining and SEM analysis of the healed wound sections revealed significant pro-healing effects. Thus, SCSA@C/b is a promising medicinal hydrogel for encouraging wound healing in contaminated areas.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-14"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapidly self-crosslinking sodium alginate hydrogel for infected wounds.\",\"authors\":\"Yongze Liu, Mei Li, Genyuan Li, Lei He, Xiaofeng Ma, Zhaoxiang Zhang, Jun Zhang\",\"doi\":\"10.1080/09205063.2024.2438497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The risks associated with wound infections are significant, making a snug-fitting hydrogel dressing an optimal choice for wound management. For it, we employed the self-cross-linking method of oxidized sodium alginate (SCSA), incorporating clarithromycin (Cla) and basic fibroblast growth factor (bFGF) to formulate a rapidly forming, bacteriostatic, and wound-healing hydrogel (SCSA@C/b). Bacteriostatic and cytocompatibility assays demonstrated that SCSA@C/b exhibits exceptional antibacterial activity alongside strong biocompatibility. A fractional infected wound model showed that SCSA@C/b accelerated healing of infected wounds by approximately three days compared to the healing time of the control group, with nearly complete wound recovery. H&E staining and SEM analysis of the healed wound sections revealed significant pro-healing effects. Thus, SCSA@C/b is a promising medicinal hydrogel for encouraging wound healing in contaminated areas.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2024.2438497\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2438497","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Rapidly self-crosslinking sodium alginate hydrogel for infected wounds.
The risks associated with wound infections are significant, making a snug-fitting hydrogel dressing an optimal choice for wound management. For it, we employed the self-cross-linking method of oxidized sodium alginate (SCSA), incorporating clarithromycin (Cla) and basic fibroblast growth factor (bFGF) to formulate a rapidly forming, bacteriostatic, and wound-healing hydrogel (SCSA@C/b). Bacteriostatic and cytocompatibility assays demonstrated that SCSA@C/b exhibits exceptional antibacterial activity alongside strong biocompatibility. A fractional infected wound model showed that SCSA@C/b accelerated healing of infected wounds by approximately three days compared to the healing time of the control group, with nearly complete wound recovery. H&E staining and SEM analysis of the healed wound sections revealed significant pro-healing effects. Thus, SCSA@C/b is a promising medicinal hydrogel for encouraging wound healing in contaminated areas.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.