{"title":"实验性肥胖Wistar大鼠模型中磷酸肌苷3-激酶/蛋白激酶B和toll样受体/核因子κ B信号通路的差异表达","authors":"Liya Song, Lihua Li","doi":"10.1515/biol-2022-1014","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the differential expression of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in relation to the Toll-like receptor (TLR)/nuclear factor κB (NF-κB) signaling pathway in an obese rat model. A total of 200 8-week-old male Wistar rats were randomly assigned to a control group (Ctrl, <i>n</i> = 40) and an observation group (Obs, <i>n</i> = 160), with obesity induced through a high-fat diet. Following modeling, the Obs group was further divided into a model group, a PI3K/AKT inhibition group, a TLR/NF-κB inhibition group, and a combined PI3K/AKT + TLR/NF-κB inhibition group, with 40 rats in each. Metabolic changes were assessed by monitoring the glucose infusion rate (GIR), as well as conducting an intraperitoneal glucose tolerance test (IPGTT) and an intraperitoneal insulin tolerance test (IPITT). Hematoxylin and eosin staining was utilized to observe morphological changes in adipose tissue, while Western blotting was employed to detect the expression levels of proteins associated with the PI3K/AKT and TLR/NF-κB signaling pathways in adipose tissue. The results indicated that the Obs group exhibited significantly higher blood glucose and insulin levels during the IPGTT and IPITT experiments compared to the Ctrl group (<i>P</i> < 0.05). Additionally, the GIR, as well as the expression levels of p-PI3K and p-AKT proteins in the Obs group, were significantly lower than those in the Ctrl group (<i>P</i> < 0.05). In both the PI3K/AKT inhibition group and the combined PI3K/AKT + TLR/NF-κB inhibition group, the expression of relevant proteins further declined (<i>P</i> < 0.05). These findings suggest that while a high-fat diet decreases the activity of the PI3K/AKT signaling pathway, it concurrently promotes inflammatory responses by upregulating the TLR-4 and NF-κB signaling pathways, indicating a critical role for these pathways in obesity-related metabolic abnormalities.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"19 1","pages":"20221014"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699561/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential expression of phosphoinositide 3-kinase/protein kinase B and Toll-like receptor/nuclear factor kappa B signaling pathways in experimental obesity Wistar rat model.\",\"authors\":\"Liya Song, Lihua Li\",\"doi\":\"10.1515/biol-2022-1014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the differential expression of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in relation to the Toll-like receptor (TLR)/nuclear factor κB (NF-κB) signaling pathway in an obese rat model. A total of 200 8-week-old male Wistar rats were randomly assigned to a control group (Ctrl, <i>n</i> = 40) and an observation group (Obs, <i>n</i> = 160), with obesity induced through a high-fat diet. Following modeling, the Obs group was further divided into a model group, a PI3K/AKT inhibition group, a TLR/NF-κB inhibition group, and a combined PI3K/AKT + TLR/NF-κB inhibition group, with 40 rats in each. Metabolic changes were assessed by monitoring the glucose infusion rate (GIR), as well as conducting an intraperitoneal glucose tolerance test (IPGTT) and an intraperitoneal insulin tolerance test (IPITT). Hematoxylin and eosin staining was utilized to observe morphological changes in adipose tissue, while Western blotting was employed to detect the expression levels of proteins associated with the PI3K/AKT and TLR/NF-κB signaling pathways in adipose tissue. The results indicated that the Obs group exhibited significantly higher blood glucose and insulin levels during the IPGTT and IPITT experiments compared to the Ctrl group (<i>P</i> < 0.05). Additionally, the GIR, as well as the expression levels of p-PI3K and p-AKT proteins in the Obs group, were significantly lower than those in the Ctrl group (<i>P</i> < 0.05). In both the PI3K/AKT inhibition group and the combined PI3K/AKT + TLR/NF-κB inhibition group, the expression of relevant proteins further declined (<i>P</i> < 0.05). These findings suggest that while a high-fat diet decreases the activity of the PI3K/AKT signaling pathway, it concurrently promotes inflammatory responses by upregulating the TLR-4 and NF-κB signaling pathways, indicating a critical role for these pathways in obesity-related metabolic abnormalities.</p>\",\"PeriodicalId\":19605,\"journal\":{\"name\":\"Open Life Sciences\",\"volume\":\"19 1\",\"pages\":\"20221014\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699561/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/biol-2022-1014\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-1014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Differential expression of phosphoinositide 3-kinase/protein kinase B and Toll-like receptor/nuclear factor kappa B signaling pathways in experimental obesity Wistar rat model.
This study aimed to investigate the differential expression of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in relation to the Toll-like receptor (TLR)/nuclear factor κB (NF-κB) signaling pathway in an obese rat model. A total of 200 8-week-old male Wistar rats were randomly assigned to a control group (Ctrl, n = 40) and an observation group (Obs, n = 160), with obesity induced through a high-fat diet. Following modeling, the Obs group was further divided into a model group, a PI3K/AKT inhibition group, a TLR/NF-κB inhibition group, and a combined PI3K/AKT + TLR/NF-κB inhibition group, with 40 rats in each. Metabolic changes were assessed by monitoring the glucose infusion rate (GIR), as well as conducting an intraperitoneal glucose tolerance test (IPGTT) and an intraperitoneal insulin tolerance test (IPITT). Hematoxylin and eosin staining was utilized to observe morphological changes in adipose tissue, while Western blotting was employed to detect the expression levels of proteins associated with the PI3K/AKT and TLR/NF-κB signaling pathways in adipose tissue. The results indicated that the Obs group exhibited significantly higher blood glucose and insulin levels during the IPGTT and IPITT experiments compared to the Ctrl group (P < 0.05). Additionally, the GIR, as well as the expression levels of p-PI3K and p-AKT proteins in the Obs group, were significantly lower than those in the Ctrl group (P < 0.05). In both the PI3K/AKT inhibition group and the combined PI3K/AKT + TLR/NF-κB inhibition group, the expression of relevant proteins further declined (P < 0.05). These findings suggest that while a high-fat diet decreases the activity of the PI3K/AKT signaling pathway, it concurrently promotes inflammatory responses by upregulating the TLR-4 and NF-κB signaling pathways, indicating a critical role for these pathways in obesity-related metabolic abnormalities.
期刊介绍:
Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.