{"title":"基于增强约束的普通OCT图像视网膜层分割。","authors":"Jinbao Hao, Huiqi Li, Shuai Lu, Zeheng Li, Weihang Zhang","doi":"10.1016/j.compmedimag.2024.102480","DOIUrl":null,"url":null,"abstract":"<div><div>The change of layer thickness of retina is closely associated with the development of ocular diseases such as glaucoma and optic disc drusen. Optical coherence tomography (OCT) is a widely used technology to visualize the lamellar structures of retina. Accurate segmentation of retinal lamellar structures is crucial for diagnosis, treatment, and related research of ocular diseases. However, existing studies have focused on improving the segmentation accuracy, they cannot achieve consistent segmentation performance on different types of datasets, such as retinal OCT images with optic disc and interference of diseases. To this end, a general retinal layer segmentation method is presented in this paper. To obtain more continuous and smoother boundaries, feature enhanced decoding module with reinforcement constraint is proposed, fusing boundary prior and distribution prior, and correcting bias in learning process simultaneously. To enhance the model’s perception of the slender retinal structure, position channel attention is introduced, obtaining global dependencies of both space and channel. To handle the imbalanced distribution of retinal OCT images, focal loss is introduced, guiding the model to pay more attention to retinal layers with a smaller proportion. The designed method achieves the state-of-the-art (SOTA) overall performance on five datasets (i.e., MGU, DUKE, NR206, OCTA500 and private dataset).</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"120 ","pages":"Article 102480"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General retinal layer segmentation in OCT images via reinforcement constraint\",\"authors\":\"Jinbao Hao, Huiqi Li, Shuai Lu, Zeheng Li, Weihang Zhang\",\"doi\":\"10.1016/j.compmedimag.2024.102480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The change of layer thickness of retina is closely associated with the development of ocular diseases such as glaucoma and optic disc drusen. Optical coherence tomography (OCT) is a widely used technology to visualize the lamellar structures of retina. Accurate segmentation of retinal lamellar structures is crucial for diagnosis, treatment, and related research of ocular diseases. However, existing studies have focused on improving the segmentation accuracy, they cannot achieve consistent segmentation performance on different types of datasets, such as retinal OCT images with optic disc and interference of diseases. To this end, a general retinal layer segmentation method is presented in this paper. To obtain more continuous and smoother boundaries, feature enhanced decoding module with reinforcement constraint is proposed, fusing boundary prior and distribution prior, and correcting bias in learning process simultaneously. To enhance the model’s perception of the slender retinal structure, position channel attention is introduced, obtaining global dependencies of both space and channel. To handle the imbalanced distribution of retinal OCT images, focal loss is introduced, guiding the model to pay more attention to retinal layers with a smaller proportion. The designed method achieves the state-of-the-art (SOTA) overall performance on five datasets (i.e., MGU, DUKE, NR206, OCTA500 and private dataset).</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"120 \",\"pages\":\"Article 102480\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124001575\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001575","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
General retinal layer segmentation in OCT images via reinforcement constraint
The change of layer thickness of retina is closely associated with the development of ocular diseases such as glaucoma and optic disc drusen. Optical coherence tomography (OCT) is a widely used technology to visualize the lamellar structures of retina. Accurate segmentation of retinal lamellar structures is crucial for diagnosis, treatment, and related research of ocular diseases. However, existing studies have focused on improving the segmentation accuracy, they cannot achieve consistent segmentation performance on different types of datasets, such as retinal OCT images with optic disc and interference of diseases. To this end, a general retinal layer segmentation method is presented in this paper. To obtain more continuous and smoother boundaries, feature enhanced decoding module with reinforcement constraint is proposed, fusing boundary prior and distribution prior, and correcting bias in learning process simultaneously. To enhance the model’s perception of the slender retinal structure, position channel attention is introduced, obtaining global dependencies of both space and channel. To handle the imbalanced distribution of retinal OCT images, focal loss is introduced, guiding the model to pay more attention to retinal layers with a smaller proportion. The designed method achieves the state-of-the-art (SOTA) overall performance on five datasets (i.e., MGU, DUKE, NR206, OCTA500 and private dataset).
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.