基于增强约束的普通OCT图像视网膜层分割。

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Computerized Medical Imaging and Graphics Pub Date : 2024-12-24 DOI:10.1016/j.compmedimag.2024.102480
Jinbao Hao, Huiqi Li, Shuai Lu, Zeheng Li, Weihang Zhang
{"title":"基于增强约束的普通OCT图像视网膜层分割。","authors":"Jinbao Hao,&nbsp;Huiqi Li,&nbsp;Shuai Lu,&nbsp;Zeheng Li,&nbsp;Weihang Zhang","doi":"10.1016/j.compmedimag.2024.102480","DOIUrl":null,"url":null,"abstract":"<div><div>The change of layer thickness of retina is closely associated with the development of ocular diseases such as glaucoma and optic disc drusen. Optical coherence tomography (OCT) is a widely used technology to visualize the lamellar structures of retina. Accurate segmentation of retinal lamellar structures is crucial for diagnosis, treatment, and related research of ocular diseases. However, existing studies have focused on improving the segmentation accuracy, they cannot achieve consistent segmentation performance on different types of datasets, such as retinal OCT images with optic disc and interference of diseases. To this end, a general retinal layer segmentation method is presented in this paper. To obtain more continuous and smoother boundaries, feature enhanced decoding module with reinforcement constraint is proposed, fusing boundary prior and distribution prior, and correcting bias in learning process simultaneously. To enhance the model’s perception of the slender retinal structure, position channel attention is introduced, obtaining global dependencies of both space and channel. To handle the imbalanced distribution of retinal OCT images, focal loss is introduced, guiding the model to pay more attention to retinal layers with a smaller proportion. The designed method achieves the state-of-the-art (SOTA) overall performance on five datasets (i.e., MGU, DUKE, NR206, OCTA500 and private dataset).</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"120 ","pages":"Article 102480"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General retinal layer segmentation in OCT images via reinforcement constraint\",\"authors\":\"Jinbao Hao,&nbsp;Huiqi Li,&nbsp;Shuai Lu,&nbsp;Zeheng Li,&nbsp;Weihang Zhang\",\"doi\":\"10.1016/j.compmedimag.2024.102480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The change of layer thickness of retina is closely associated with the development of ocular diseases such as glaucoma and optic disc drusen. Optical coherence tomography (OCT) is a widely used technology to visualize the lamellar structures of retina. Accurate segmentation of retinal lamellar structures is crucial for diagnosis, treatment, and related research of ocular diseases. However, existing studies have focused on improving the segmentation accuracy, they cannot achieve consistent segmentation performance on different types of datasets, such as retinal OCT images with optic disc and interference of diseases. To this end, a general retinal layer segmentation method is presented in this paper. To obtain more continuous and smoother boundaries, feature enhanced decoding module with reinforcement constraint is proposed, fusing boundary prior and distribution prior, and correcting bias in learning process simultaneously. To enhance the model’s perception of the slender retinal structure, position channel attention is introduced, obtaining global dependencies of both space and channel. To handle the imbalanced distribution of retinal OCT images, focal loss is introduced, guiding the model to pay more attention to retinal layers with a smaller proportion. The designed method achieves the state-of-the-art (SOTA) overall performance on five datasets (i.e., MGU, DUKE, NR206, OCTA500 and private dataset).</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"120 \",\"pages\":\"Article 102480\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124001575\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001575","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

视网膜层厚度的变化与青光眼、视盘囊肿等眼部疾病的发生密切相关。光学相干断层扫描(OCT)是一种广泛应用于视网膜板层结构可视化的技术。视网膜板层结构的准确分割对于眼科疾病的诊断、治疗和相关研究至关重要。然而,现有的研究主要集中在提高分割精度上,无法在不同类型的数据集上实现一致的分割性能,例如视盘视网膜OCT图像和疾病干扰。为此,本文提出了一种通用的视网膜层分割方法。为了获得更连续平滑的边界,提出了带有强化约束的特征增强解码模块,融合边界先验和分布先验,同时校正学习过程中的偏差。为了增强模型对细长视网膜结构的感知,引入了位置通道注意,获得了空间和通道的全局依赖关系。为了解决视网膜OCT图像分布不平衡的问题,引入焦损失,引导模型更多地关注比例较小的视网膜层。设计的方法在5个数据集(MGU、DUKE、NR206、OCTA500和private dataset)上实现了最先进(SOTA)的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
General retinal layer segmentation in OCT images via reinforcement constraint
The change of layer thickness of retina is closely associated with the development of ocular diseases such as glaucoma and optic disc drusen. Optical coherence tomography (OCT) is a widely used technology to visualize the lamellar structures of retina. Accurate segmentation of retinal lamellar structures is crucial for diagnosis, treatment, and related research of ocular diseases. However, existing studies have focused on improving the segmentation accuracy, they cannot achieve consistent segmentation performance on different types of datasets, such as retinal OCT images with optic disc and interference of diseases. To this end, a general retinal layer segmentation method is presented in this paper. To obtain more continuous and smoother boundaries, feature enhanced decoding module with reinforcement constraint is proposed, fusing boundary prior and distribution prior, and correcting bias in learning process simultaneously. To enhance the model’s perception of the slender retinal structure, position channel attention is introduced, obtaining global dependencies of both space and channel. To handle the imbalanced distribution of retinal OCT images, focal loss is introduced, guiding the model to pay more attention to retinal layers with a smaller proportion. The designed method achieves the state-of-the-art (SOTA) overall performance on five datasets (i.e., MGU, DUKE, NR206, OCTA500 and private dataset).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
期刊最新文献
Prior knowledge-based multi-task learning network for pulmonary nodule classification Automatic Joint Lesion Detection by enhancing local feature interaction TQGDNet: Coronary artery calcium deposit detection on computed tomography CGNet: Few-shot learning for Intracranial Hemorrhage Segmentation Weakly supervised multi-modal contrastive learning framework for predicting the HER2 scores in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1