{"title":"经颅聚焦超声神经调节治疗精神障碍的研究进展。","authors":"Yu Shi, Wen Wu","doi":"10.1016/j.pnpbp.2024.111244","DOIUrl":null,"url":null,"abstract":"<div><div>Mental disorders are a major public health concern, affecting millions worldwide. Current treatments have limitations, highlighting the need for novel, effective, and safe interventions. Transcranial focused ultrasound (tFUS), a non-invasive neuromodulation technology, has emerged as a promising tool for treating mental disorders due to its high controllability, precision, and safety. This review summarizes the research progress of tFUS in several major mental disorders, including depression, anxiety, schizophrenia, and substance use disorders (SUDs). Animal studies have demonstrated the efficacy of tFUS in improving psychiatric symptoms and modulating neural circuits through various mechanisms, such as enhancing neuronal activity, synaptic plasticity, and neurotransmitter release. Preliminary clinical trials have also shown the potential of tFUS in alleviating symptoms in patients with treatment-resistant mental disorders. Safety evaluation studies across in vitro, animal, and human levels have supported the overall safety of tFUS under commonly used parameters. tFUS has shown broad application prospects in treating mental disorders, supported by its efficacy in animal models and preliminary clinical trials. By modulating neuronal activity, synaptic plasticity, neurotransmitters, and brain networks, tFUS could improve psychiatric symptoms and regulate neural circuits. However, current research on tFUS in mental disorders is still in its early stages, and further studies are needed to elucidate its mechanisms of action, expand its applications, and conduct large-sample, long-term clinical trials to systematically evaluate its efficacy, protocol optimization, and safety. As an innovative neuromodulation technology, tFUS has the potential to complement conventional therapies and provide new hope for addressing the global challenge of mental disorders.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"136 ","pages":"Article 111244"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in transcranial focused ultrasound neuromodulation for mental disorders\",\"authors\":\"Yu Shi, Wen Wu\",\"doi\":\"10.1016/j.pnpbp.2024.111244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mental disorders are a major public health concern, affecting millions worldwide. Current treatments have limitations, highlighting the need for novel, effective, and safe interventions. Transcranial focused ultrasound (tFUS), a non-invasive neuromodulation technology, has emerged as a promising tool for treating mental disorders due to its high controllability, precision, and safety. This review summarizes the research progress of tFUS in several major mental disorders, including depression, anxiety, schizophrenia, and substance use disorders (SUDs). Animal studies have demonstrated the efficacy of tFUS in improving psychiatric symptoms and modulating neural circuits through various mechanisms, such as enhancing neuronal activity, synaptic plasticity, and neurotransmitter release. Preliminary clinical trials have also shown the potential of tFUS in alleviating symptoms in patients with treatment-resistant mental disorders. Safety evaluation studies across in vitro, animal, and human levels have supported the overall safety of tFUS under commonly used parameters. tFUS has shown broad application prospects in treating mental disorders, supported by its efficacy in animal models and preliminary clinical trials. By modulating neuronal activity, synaptic plasticity, neurotransmitters, and brain networks, tFUS could improve psychiatric symptoms and regulate neural circuits. However, current research on tFUS in mental disorders is still in its early stages, and further studies are needed to elucidate its mechanisms of action, expand its applications, and conduct large-sample, long-term clinical trials to systematically evaluate its efficacy, protocol optimization, and safety. As an innovative neuromodulation technology, tFUS has the potential to complement conventional therapies and provide new hope for addressing the global challenge of mental disorders.</div></div>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":\"136 \",\"pages\":\"Article 111244\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278584624003129\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584624003129","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Advances in transcranial focused ultrasound neuromodulation for mental disorders
Mental disorders are a major public health concern, affecting millions worldwide. Current treatments have limitations, highlighting the need for novel, effective, and safe interventions. Transcranial focused ultrasound (tFUS), a non-invasive neuromodulation technology, has emerged as a promising tool for treating mental disorders due to its high controllability, precision, and safety. This review summarizes the research progress of tFUS in several major mental disorders, including depression, anxiety, schizophrenia, and substance use disorders (SUDs). Animal studies have demonstrated the efficacy of tFUS in improving psychiatric symptoms and modulating neural circuits through various mechanisms, such as enhancing neuronal activity, synaptic plasticity, and neurotransmitter release. Preliminary clinical trials have also shown the potential of tFUS in alleviating symptoms in patients with treatment-resistant mental disorders. Safety evaluation studies across in vitro, animal, and human levels have supported the overall safety of tFUS under commonly used parameters. tFUS has shown broad application prospects in treating mental disorders, supported by its efficacy in animal models and preliminary clinical trials. By modulating neuronal activity, synaptic plasticity, neurotransmitters, and brain networks, tFUS could improve psychiatric symptoms and regulate neural circuits. However, current research on tFUS in mental disorders is still in its early stages, and further studies are needed to elucidate its mechanisms of action, expand its applications, and conduct large-sample, long-term clinical trials to systematically evaluate its efficacy, protocol optimization, and safety. As an innovative neuromodulation technology, tFUS has the potential to complement conventional therapies and provide new hope for addressing the global challenge of mental disorders.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.