细胞外基质制备对环境的影响。

Ying Chen, Zihao Ke, Haiyang Wang, Rui Zhang, Yingjie Zhou, Enrico Marsili, Jin Mei
{"title":"细胞外基质制备对环境的影响。","authors":"Ying Chen, Zihao Ke, Haiyang Wang, Rui Zhang, Yingjie Zhou, Enrico Marsili, Jin Mei","doi":"10.1111/febs.17385","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols. Life cycle assessment (LCA) methodology has been developed to evaluate the environmental impacts of products produced through diverse processes. Despite its widespread application in the pharmaceutical industry, LCA has seldom been utilized to estimate the environmental effects of laboratory protocols. This Viewpoint applies LCA to assess the functionality and environmental impacts of ECM produced via P1, P2, and P3. The results of this assessment indicate that the protocol with the highest impact generates approximately 43 times more CO<sub>2</sub>-equivalent emissions (CO<sub>2</sub> eq) than that with the lowest impact, while the ECM produced using the least impactful protocol demonstrates the highest biocompatibility. Additional environmental indicators such as eutrophication, photochemical oxidation, and acidification also vary among the tested protocols. This work underscores the need to factor environmental impact in the development of novel biomedical materials.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The environmental impact of extracellular matrix preparation.\",\"authors\":\"Ying Chen, Zihao Ke, Haiyang Wang, Rui Zhang, Yingjie Zhou, Enrico Marsili, Jin Mei\",\"doi\":\"10.1111/febs.17385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols. Life cycle assessment (LCA) methodology has been developed to evaluate the environmental impacts of products produced through diverse processes. Despite its widespread application in the pharmaceutical industry, LCA has seldom been utilized to estimate the environmental effects of laboratory protocols. This Viewpoint applies LCA to assess the functionality and environmental impacts of ECM produced via P1, P2, and P3. The results of this assessment indicate that the protocol with the highest impact generates approximately 43 times more CO<sub>2</sub>-equivalent emissions (CO<sub>2</sub> eq) than that with the lowest impact, while the ECM produced using the least impactful protocol demonstrates the highest biocompatibility. Additional environmental indicators such as eutrophication, photochemical oxidation, and acidification also vary among the tested protocols. This work underscores the need to factor environmental impact in the development of novel biomedical materials.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.17385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞外基质(ECM)是一个由蛋白质和其他分子组成的网络,它包裹并支持体内的细胞和组织。随着ECM的临床和生物技术用途不断扩大,评估其生产对环境的影响至关重要。由于高水平的定制,不同的实验室采用不同的方法;因此,本研究评估了三种常见的方案。生命周期评价(LCA)方法被用来评价通过不同过程生产的产品对环境的影响。尽管LCA在制药工业中得到了广泛的应用,但它很少被用来评估实验室方案的环境影响。本观点应用LCA来评估通过P1、P2和P3产生的ECM的功能和环境影响。评估结果表明,影响最大的方案产生的二氧化碳当量排放量(CO2 eq)比影响最小的方案多约43倍,而使用影响最小的方案产生的ECM具有最高的生物相容性。其他环境指标,如富营养化、光化学氧化和酸化也因测试方案而异。这项工作强调了在新型生物医学材料的开发中考虑环境影响的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The environmental impact of extracellular matrix preparation.

The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols. Life cycle assessment (LCA) methodology has been developed to evaluate the environmental impacts of products produced through diverse processes. Despite its widespread application in the pharmaceutical industry, LCA has seldom been utilized to estimate the environmental effects of laboratory protocols. This Viewpoint applies LCA to assess the functionality and environmental impacts of ECM produced via P1, P2, and P3. The results of this assessment indicate that the protocol with the highest impact generates approximately 43 times more CO2-equivalent emissions (CO2 eq) than that with the lowest impact, while the ECM produced using the least impactful protocol demonstrates the highest biocompatibility. Additional environmental indicators such as eutrophication, photochemical oxidation, and acidification also vary among the tested protocols. This work underscores the need to factor environmental impact in the development of novel biomedical materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protein biochemistry and engineering drive the development of a carbonic anhydrase-based carbon dioxide sequestration strategy. Transcriptomic signatures and network-based methods uncover new senescent cell anti-apoptotic pathways and senolytics. Protective effects of neutrophil serine protease inhibition against ischemia-reperfusion injury in lung or heart transplantation. Transcriptome-wide alternative mRNA splicing analysis reveals post-transcriptional regulation of neuronal differentiation. Transketolase promotes osteosarcoma progression through the YY1-PAK4 axis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1