Mario A. Guzman, Thomas Monecke, T. James Reynolds
{"title":"美国科罗拉多州Sunnyside中硫化浅成热液矿床流体闪蒸形成多金属脉","authors":"Mario A. Guzman, Thomas Monecke, T. James Reynolds","doi":"10.1007/s00126-024-01341-9","DOIUrl":null,"url":null,"abstract":"<p>Sunnyside is a well-preserved Miocene polymetallic vein deposit located in the Western San Juan Mountains of Colorado, USA. The steeply dipping veins extend vertically for ~ 600 m and can be traced laterally over a combined length of ~ 2100 m. Fracture-controlled fluid flow dominated during the pre-ore stage. Subsequent ore deposition along major extensional structures took place at far-from-equilibrium conditions resulting in the formation of ore mineral dendrites in a silica matrix that was originally noncrystalline. Recrystallization of the noncrystalline silica to quartz caused extensive microtextural modification of the veins during and after the ore-stage. Microtextural evidence suggests that essentially all quartz in the ore-stage veins originated from a noncrystalline silica precursor. The deposition of ore mineral dendrites and noncrystalline silica is interpreted to have occurred during repeated fluid flashing events over the lifetime of the hydrothermal system. A period of quasi steady-state fluid flow occurred during the post-ore stage resulting in the formation of gangue minerals in open spaces in the veins. Fluid inclusion evidence suggests that the veins at Sunnyside formed at the transition between the epithermal and porphyry environments at ~ 1300–1900 m below the paleowater table at temperatures ranging up to ~ 345 °C. </p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"89 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymetallic vein formation through fluid flashing at the Sunnyside intermediate-sulfidation epithermal deposit, Colorado, USA\",\"authors\":\"Mario A. Guzman, Thomas Monecke, T. James Reynolds\",\"doi\":\"10.1007/s00126-024-01341-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sunnyside is a well-preserved Miocene polymetallic vein deposit located in the Western San Juan Mountains of Colorado, USA. The steeply dipping veins extend vertically for ~ 600 m and can be traced laterally over a combined length of ~ 2100 m. Fracture-controlled fluid flow dominated during the pre-ore stage. Subsequent ore deposition along major extensional structures took place at far-from-equilibrium conditions resulting in the formation of ore mineral dendrites in a silica matrix that was originally noncrystalline. Recrystallization of the noncrystalline silica to quartz caused extensive microtextural modification of the veins during and after the ore-stage. Microtextural evidence suggests that essentially all quartz in the ore-stage veins originated from a noncrystalline silica precursor. The deposition of ore mineral dendrites and noncrystalline silica is interpreted to have occurred during repeated fluid flashing events over the lifetime of the hydrothermal system. A period of quasi steady-state fluid flow occurred during the post-ore stage resulting in the formation of gangue minerals in open spaces in the veins. Fluid inclusion evidence suggests that the veins at Sunnyside formed at the transition between the epithermal and porphyry environments at ~ 1300–1900 m below the paleowater table at temperatures ranging up to ~ 345 °C. </p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-024-01341-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01341-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Polymetallic vein formation through fluid flashing at the Sunnyside intermediate-sulfidation epithermal deposit, Colorado, USA
Sunnyside is a well-preserved Miocene polymetallic vein deposit located in the Western San Juan Mountains of Colorado, USA. The steeply dipping veins extend vertically for ~ 600 m and can be traced laterally over a combined length of ~ 2100 m. Fracture-controlled fluid flow dominated during the pre-ore stage. Subsequent ore deposition along major extensional structures took place at far-from-equilibrium conditions resulting in the formation of ore mineral dendrites in a silica matrix that was originally noncrystalline. Recrystallization of the noncrystalline silica to quartz caused extensive microtextural modification of the veins during and after the ore-stage. Microtextural evidence suggests that essentially all quartz in the ore-stage veins originated from a noncrystalline silica precursor. The deposition of ore mineral dendrites and noncrystalline silica is interpreted to have occurred during repeated fluid flashing events over the lifetime of the hydrothermal system. A period of quasi steady-state fluid flow occurred during the post-ore stage resulting in the formation of gangue minerals in open spaces in the veins. Fluid inclusion evidence suggests that the veins at Sunnyside formed at the transition between the epithermal and porphyry environments at ~ 1300–1900 m below the paleowater table at temperatures ranging up to ~ 345 °C.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.