Peng Li, Mai Sun, Jingfeng Xiao, Yunpeng Luo, Yao Zhang, Xing Li, Xiaolu Zhou, Changhui Peng
{"title":"大气CO2上升缓解干旱对北方中高纬度地区秋叶衰老的影响","authors":"Peng Li, Mai Sun, Jingfeng Xiao, Yunpeng Luo, Yao Zhang, Xing Li, Xiaolu Zhou, Changhui Peng","doi":"10.1111/geb.13954","DOIUrl":null,"url":null,"abstract":"Drought reduces plant growth and hastens the process of leaf senescence in autumn. Concurrently, increasing atmospheric CO<sub>2</sub> concentrations likely amplifies photosynthetic activity while increasing plant water-use efficiency. However, how drought affects the date of leaf senescence (DLS) and whether elevated CO<sub>2</sub> can alleviate this remain unknown. Here, we explore the effect of drought on DLS under recent climate change and explore the underlying mechanisms.","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"35 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rising Atmospheric CO2 Alleviates Drought Impact on Autumn Leaf Senescence Over Northern Mid-High Latitudes\",\"authors\":\"Peng Li, Mai Sun, Jingfeng Xiao, Yunpeng Luo, Yao Zhang, Xing Li, Xiaolu Zhou, Changhui Peng\",\"doi\":\"10.1111/geb.13954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drought reduces plant growth and hastens the process of leaf senescence in autumn. Concurrently, increasing atmospheric CO<sub>2</sub> concentrations likely amplifies photosynthetic activity while increasing plant water-use efficiency. However, how drought affects the date of leaf senescence (DLS) and whether elevated CO<sub>2</sub> can alleviate this remain unknown. Here, we explore the effect of drought on DLS under recent climate change and explore the underlying mechanisms.\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/geb.13954\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/geb.13954","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Rising Atmospheric CO2 Alleviates Drought Impact on Autumn Leaf Senescence Over Northern Mid-High Latitudes
Drought reduces plant growth and hastens the process of leaf senescence in autumn. Concurrently, increasing atmospheric CO2 concentrations likely amplifies photosynthetic activity while increasing plant water-use efficiency. However, how drought affects the date of leaf senescence (DLS) and whether elevated CO2 can alleviate this remain unknown. Here, we explore the effect of drought on DLS under recent climate change and explore the underlying mechanisms.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.