用密度分裂聚类约束原始非高斯性

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2025-01-09 DOI:10.1088/1475-7516/2025/01/026
James Morawetz, Enrique Paillas and Will J. Percival
{"title":"用密度分裂聚类约束原始非高斯性","authors":"James Morawetz, Enrique Paillas and Will J. Percival","doi":"10.1088/1475-7516/2025/01/026","DOIUrl":null,"url":null,"abstract":"Obtaining tight constraints on primordial non-Gaussianity (PNG) is a key step in discriminating between different models for cosmic inflation. The constraining power from large-scale structure (LSS) measurements is expected to overtake that from cosmic microwave background (CMB) anisotropies with the next generation of galaxy surveys including the Dark Energy Spectroscopic Instrument (DESI) and Euclid. We consider whether Density-Split Clustering (DSC) can help improve PNG constraints from these surveys for local, equilateral and orthogonal types. DSC separates a surveyed volume into regions based on local density and measures the clustering statistics within each environment. Using the Quijote simulations and the Fisher information formalism, we compare PNG constraints from the standard halo power spectrum, DSC power spectra and joint halo/DSC power spectra. We find that the joint halo/DSC power spectra outperform the halo power spectrum by factors of ∼ 1.4, 8.8, and 3.6 for local, equilateral and orthogonal PNG, respectively. This is driven by the higher-order information that DSC captures on small scales. We find that applying DSC to a halo field does not allow sample variance cancellation on large scales by providing multiple tracers of the same volume with different local PNG responses. Additionally, we introduce a Fourier space analysis for DSC and study the impact of several modifications to the pipeline, such as varying the smoothing radius and the number of density environments and replacing random query positions with lattice points.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"56 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraining primordial non-Gaussianity with Density-Split Clustering\",\"authors\":\"James Morawetz, Enrique Paillas and Will J. Percival\",\"doi\":\"10.1088/1475-7516/2025/01/026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obtaining tight constraints on primordial non-Gaussianity (PNG) is a key step in discriminating between different models for cosmic inflation. The constraining power from large-scale structure (LSS) measurements is expected to overtake that from cosmic microwave background (CMB) anisotropies with the next generation of galaxy surveys including the Dark Energy Spectroscopic Instrument (DESI) and Euclid. We consider whether Density-Split Clustering (DSC) can help improve PNG constraints from these surveys for local, equilateral and orthogonal types. DSC separates a surveyed volume into regions based on local density and measures the clustering statistics within each environment. Using the Quijote simulations and the Fisher information formalism, we compare PNG constraints from the standard halo power spectrum, DSC power spectra and joint halo/DSC power spectra. We find that the joint halo/DSC power spectra outperform the halo power spectrum by factors of ∼ 1.4, 8.8, and 3.6 for local, equilateral and orthogonal PNG, respectively. This is driven by the higher-order information that DSC captures on small scales. We find that applying DSC to a halo field does not allow sample variance cancellation on large scales by providing multiple tracers of the same volume with different local PNG responses. Additionally, we introduce a Fourier space analysis for DSC and study the impact of several modifications to the pipeline, such as varying the smoothing radius and the number of density environments and replacing random query positions with lattice points.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/01/026\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/026","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

获得对原始非高斯性(PNG)的严格约束是区分不同宇宙暴胀模型的关键步骤。大尺度结构(LSS)测量的约束力有望超过宇宙微波背景(CMB)各向异性的约束力,下一代星系调查包括暗能量光谱仪器(DESI)和欧几里得。我们考虑密度分裂聚类(DSC)是否可以帮助改善这些调查对局部、等边和正交类型的PNG约束。DSC根据局部密度将调查卷划分为区域,并测量每个环境中的聚类统计信息。利用Quijote模拟和Fisher信息形式,我们比较了标准光晕功率谱、DSC功率谱和联合光晕/DSC功率谱的PNG约束。我们发现,对于局部、等边和正交PNG,联合光晕/DSC功率谱分别比光晕功率谱高出约1.4、8.8和3.6倍。这是由DSC在小尺度上捕获的高阶信息驱动的。我们发现,通过提供具有不同局部PNG响应的相同体积的多个示踪剂,将DSC应用于晕场不允许在大尺度上消除样本方差。此外,我们引入了DSC的傅里叶空间分析,并研究了几种修改对管道的影响,例如改变平滑半径和密度环境的数量,并用晶格点替换随机查询位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constraining primordial non-Gaussianity with Density-Split Clustering
Obtaining tight constraints on primordial non-Gaussianity (PNG) is a key step in discriminating between different models for cosmic inflation. The constraining power from large-scale structure (LSS) measurements is expected to overtake that from cosmic microwave background (CMB) anisotropies with the next generation of galaxy surveys including the Dark Energy Spectroscopic Instrument (DESI) and Euclid. We consider whether Density-Split Clustering (DSC) can help improve PNG constraints from these surveys for local, equilateral and orthogonal types. DSC separates a surveyed volume into regions based on local density and measures the clustering statistics within each environment. Using the Quijote simulations and the Fisher information formalism, we compare PNG constraints from the standard halo power spectrum, DSC power spectra and joint halo/DSC power spectra. We find that the joint halo/DSC power spectra outperform the halo power spectrum by factors of ∼ 1.4, 8.8, and 3.6 for local, equilateral and orthogonal PNG, respectively. This is driven by the higher-order information that DSC captures on small scales. We find that applying DSC to a halo field does not allow sample variance cancellation on large scales by providing multiple tracers of the same volume with different local PNG responses. Additionally, we introduce a Fourier space analysis for DSC and study the impact of several modifications to the pipeline, such as varying the smoothing radius and the number of density environments and replacing random query positions with lattice points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
Singularity avoidance from path integral The footprint of nuclear saturation properties on the neutron star f mode oscillation frequencies: a machine learning approach Kinematic reconstruction of torsion as dark energy in Friedmann cosmology Stealth black holes in Aether Scalar Tensor theory Constraints on dark energy and modified gravity from the BOSS Full-Shape and DESI BAO data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1