Laura E. Brettell, Ananya F. Hoque, Tara S. Joseph, Vishaal Dhokiya, Emily A. Hornett, Grant L. Hughes, Eva Heinz
{"title":"在同一机构附近的昆虫饲养场饲养的蚊子有明显不同的微生物组","authors":"Laura E. Brettell, Ananya F. Hoque, Tara S. Joseph, Vishaal Dhokiya, Emily A. Hornett, Grant L. Hughes, Eva Heinz","doi":"10.1111/1462-2920.70027","DOIUrl":null,"url":null,"abstract":"<p>The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of <i>Aedes aegypti</i> eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded. While developmental success was similar across all three insectaries, differences in microbiome composition were observed between mosquitoes from each insectary. Environmental conditions and bacterial input via food sources varied between insectaries, potentially contributing to the observed differences in microbiome composition. At both adult and larval stages, specific members of the mosquito microbiome were associated with particular insectaries; the insectary with less stable and cooler conditions resulted in a slower pupation rate and higher diversity of the larval microbiome. These findings underscore that even minor inconsistencies in rearing conditions can affect the composition of the mosquito microbiome, which may influence experimental outcomes.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70027","citationCount":"0","resultStr":"{\"title\":\"Mosquitoes Reared in Nearby Insectaries at the Same Institution Have Significantly Divergent Microbiomes\",\"authors\":\"Laura E. Brettell, Ananya F. Hoque, Tara S. Joseph, Vishaal Dhokiya, Emily A. Hornett, Grant L. Hughes, Eva Heinz\",\"doi\":\"10.1111/1462-2920.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of <i>Aedes aegypti</i> eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded. While developmental success was similar across all three insectaries, differences in microbiome composition were observed between mosquitoes from each insectary. Environmental conditions and bacterial input via food sources varied between insectaries, potentially contributing to the observed differences in microbiome composition. At both adult and larval stages, specific members of the mosquito microbiome were associated with particular insectaries; the insectary with less stable and cooler conditions resulted in a slower pupation rate and higher diversity of the larval microbiome. These findings underscore that even minor inconsistencies in rearing conditions can affect the composition of the mosquito microbiome, which may influence experimental outcomes.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70027\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70027","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Mosquitoes Reared in Nearby Insectaries at the Same Institution Have Significantly Divergent Microbiomes
The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of Aedes aegypti eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded. While developmental success was similar across all three insectaries, differences in microbiome composition were observed between mosquitoes from each insectary. Environmental conditions and bacterial input via food sources varied between insectaries, potentially contributing to the observed differences in microbiome composition. At both adult and larval stages, specific members of the mosquito microbiome were associated with particular insectaries; the insectary with less stable and cooler conditions resulted in a slower pupation rate and higher diversity of the larval microbiome. These findings underscore that even minor inconsistencies in rearing conditions can affect the composition of the mosquito microbiome, which may influence experimental outcomes.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens