多功能冠醚添加剂调节脱溶过程,实现高可逆锌金属电池

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-01-09 DOI:10.1002/aenm.202404450
Aohua Wu, Shaojie Zhang, Qiaohui Li, Wenxian Xue, Chuanyang Li, Baojuan Xi, Wutao Mao, Keyan Bao, Shenglin Xiong
{"title":"多功能冠醚添加剂调节脱溶过程,实现高可逆锌金属电池","authors":"Aohua Wu, Shaojie Zhang, Qiaohui Li, Wenxian Xue, Chuanyang Li, Baojuan Xi, Wutao Mao, Keyan Bao, Shenglin Xiong","doi":"10.1002/aenm.202404450","DOIUrl":null,"url":null,"abstract":"Aqueous zinc‐ion batteries have garnered significant attention due to their abundant materials, low production costs, and safety. However, these batteries suffer from severe side reactions, which are closely associated with the presence of a substantial amount of solvent at the electrode surfaces. Herein, 1,4,7,10,13,16‐hexaoxacyclooctadecane (18‐crown‐6) is added to the electrolyte to illustrate both theoretically and experimentally its contribution to the rapid desolvation aspect. It is shown that the addition of 18‐crown‐6 to the electrolyte greatly facilitates the desolvation of the solvated structure and prevents the collection of solvent molecules on the surface of zinc anode, thus inhibiting the hydrogen precipitation reaction. It also enhances the transference number of zinc ions, which makes the interfacial electric field on the zinc anode stable and thus promotes the orderly diffusion and uniform nucleation of Zn<jats:sup>2+</jats:sup>, and inhibits the growth of dendrites. As a result, the electrolyte containing 18‐crown‐6 as additives shows a stable cycle life, Zn||Zn symmetric cell is cycled for nearly 1700 h at 1 mA cm<jats:sup>−2</jats:sup>, showing a significant improvement in Coulombic efficiency. The assembled Zn||NH<jats:sub>4</jats:sub>V<jats:sub>4</jats:sub>O<jats:sub>10</jats:sub> cell exhibits excellent electrochemical performance, reaching a capacity of 100.9 mAh g<jats:sup>−1</jats:sup> even after 4000 cycles at 10.0 A g<jats:sup>−1</jats:sup>.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"35 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Crown Ether Additive Regulates Desolvation Process to Achieve Highly Reversible Zinc‐Metal Batteries\",\"authors\":\"Aohua Wu, Shaojie Zhang, Qiaohui Li, Wenxian Xue, Chuanyang Li, Baojuan Xi, Wutao Mao, Keyan Bao, Shenglin Xiong\",\"doi\":\"10.1002/aenm.202404450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous zinc‐ion batteries have garnered significant attention due to their abundant materials, low production costs, and safety. However, these batteries suffer from severe side reactions, which are closely associated with the presence of a substantial amount of solvent at the electrode surfaces. Herein, 1,4,7,10,13,16‐hexaoxacyclooctadecane (18‐crown‐6) is added to the electrolyte to illustrate both theoretically and experimentally its contribution to the rapid desolvation aspect. It is shown that the addition of 18‐crown‐6 to the electrolyte greatly facilitates the desolvation of the solvated structure and prevents the collection of solvent molecules on the surface of zinc anode, thus inhibiting the hydrogen precipitation reaction. It also enhances the transference number of zinc ions, which makes the interfacial electric field on the zinc anode stable and thus promotes the orderly diffusion and uniform nucleation of Zn<jats:sup>2+</jats:sup>, and inhibits the growth of dendrites. As a result, the electrolyte containing 18‐crown‐6 as additives shows a stable cycle life, Zn||Zn symmetric cell is cycled for nearly 1700 h at 1 mA cm<jats:sup>−2</jats:sup>, showing a significant improvement in Coulombic efficiency. The assembled Zn||NH<jats:sub>4</jats:sub>V<jats:sub>4</jats:sub>O<jats:sub>10</jats:sub> cell exhibits excellent electrochemical performance, reaching a capacity of 100.9 mAh g<jats:sup>−1</jats:sup> even after 4000 cycles at 10.0 A g<jats:sup>−1</jats:sup>.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202404450\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404450","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

水性锌离子电池因其材料丰富、生产成本低、安全性好而备受关注。然而,这些电池遭受严重的副反应,这与电极表面存在大量溶剂密切相关。本文将1,4,7,10,13,16‐六氧六环十六烷(18‐crown‐6)添加到电解质中,以从理论上和实验上说明其对快速脱溶方面的贡献。结果表明,在电解液中加入18‐crown‐6,可以极大地促进溶剂化结构的脱溶,防止溶剂分子在锌阳极表面聚集,从而抑制氢的析出反应。它还增强了锌离子的转移数,使锌阳极上的界面电场稳定,从而促进了Zn2+的有序扩散和均匀成核,抑制了枝晶的生长。结果表明,含有18‐crown‐6的电解质具有稳定的循环寿命,Zn||Zn对称电池在1 mA cm−2下循环近1700 h,库仑效率显著提高。组装的Zn||NH4V4O10电池表现出优异的电化学性能,在10.0 a g−1下循环4000次后,电池容量达到100.9 mAh g−1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifunctional Crown Ether Additive Regulates Desolvation Process to Achieve Highly Reversible Zinc‐Metal Batteries
Aqueous zinc‐ion batteries have garnered significant attention due to their abundant materials, low production costs, and safety. However, these batteries suffer from severe side reactions, which are closely associated with the presence of a substantial amount of solvent at the electrode surfaces. Herein, 1,4,7,10,13,16‐hexaoxacyclooctadecane (18‐crown‐6) is added to the electrolyte to illustrate both theoretically and experimentally its contribution to the rapid desolvation aspect. It is shown that the addition of 18‐crown‐6 to the electrolyte greatly facilitates the desolvation of the solvated structure and prevents the collection of solvent molecules on the surface of zinc anode, thus inhibiting the hydrogen precipitation reaction. It also enhances the transference number of zinc ions, which makes the interfacial electric field on the zinc anode stable and thus promotes the orderly diffusion and uniform nucleation of Zn2+, and inhibits the growth of dendrites. As a result, the electrolyte containing 18‐crown‐6 as additives shows a stable cycle life, Zn||Zn symmetric cell is cycled for nearly 1700 h at 1 mA cm−2, showing a significant improvement in Coulombic efficiency. The assembled Zn||NH4V4O10 cell exhibits excellent electrochemical performance, reaching a capacity of 100.9 mAh g−1 even after 4000 cycles at 10.0 A g−1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Acoustic Tunable Battery-Free Implants Based on Sustainable Triboelectric Nanogenerators With Metal-Polymer Intermixing Layers (Adv. Energy Mater. 4/2025) Oblique-Angle Damage-Free Evaporation of Silicon Oxide Electron-Selective Passivation Contacts for Efficient and Stable Perovskite and Perovskite/TOPCon Tandem Solar Cells (Adv. Energy Mater. 4/2025) CeO2-Accelerated Surface Reconstruction of CoSe2 Nanoneedle Forms Active CeO2@CoOOH Interface to Boost Oxygen Evolution Reaction for Water Splitting (Adv. Energy Mater. 4/2025) Hybrid Triboelectric‐Electromagnetic‐Electric Field Energy Harvester for Simultaneous Wind and Electric Field Energy Capture in High‐Voltage Transmission System (Adv. Energy Mater. 4/2025) Practical and Versatile Sodium-Ion Batteries Realized With Nitrile-Based Electrolytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1