用于多种流体宽带表征的玻璃微波微流控装置

IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Microwave Theory and Techniques Pub Date : 2024-11-15 DOI:10.1109/TMTT.2024.3491653
Jacob T. Pawlik;Tomasz Karpisz;Yasaman Kazemipour;Nicholas Derimow;Sarah R. Evans;Bryan T. Bosworth;James C. Booth;Nathan D. Orloff;Christian J. Long;Angela C. Stelson
{"title":"用于多种流体宽带表征的玻璃微波微流控装置","authors":"Jacob T. Pawlik;Tomasz Karpisz;Yasaman Kazemipour;Nicholas Derimow;Sarah R. Evans;Bryan T. Bosworth;James C. Booth;Nathan D. Orloff;Christian J. Long;Angela C. Stelson","doi":"10.1109/TMTT.2024.3491653","DOIUrl":null,"url":null,"abstract":"We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 30 GHz with associated uncertainties. Conventional microwave microfluidic devices use polymer-based microfluidic layers for fluid delivery, but these polymers swell in organic solvents and are not suitable for many applications. Our device incorporates glass microfluidic channels with platinum coplanar waveguides (CPWs) to provide a solvent-resistant architecture for broadband dielectric spectroscopy. We utilize broadband scattering parameter measurements with a vector network analyzer (VNA) on a wafer probing station and multiline thru-reflect–line (mTRL) calibrations to extract the distributed circuit parameters of transmission lines and solve for fluid permittivity. In this work, we demonstrate the utility of the device by measuring the permittivity of four organic solvents difficult to measure otherwise: hexane, heptane, decane, and toluene.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 1","pages":"258-265"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glass Microwave Microfluidic Devices for Broadband Characterization of Diverse Fluids\",\"authors\":\"Jacob T. Pawlik;Tomasz Karpisz;Yasaman Kazemipour;Nicholas Derimow;Sarah R. Evans;Bryan T. Bosworth;James C. Booth;Nathan D. Orloff;Christian J. Long;Angela C. Stelson\",\"doi\":\"10.1109/TMTT.2024.3491653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 30 GHz with associated uncertainties. Conventional microwave microfluidic devices use polymer-based microfluidic layers for fluid delivery, but these polymers swell in organic solvents and are not suitable for many applications. Our device incorporates glass microfluidic channels with platinum coplanar waveguides (CPWs) to provide a solvent-resistant architecture for broadband dielectric spectroscopy. We utilize broadband scattering parameter measurements with a vector network analyzer (VNA) on a wafer probing station and multiline thru-reflect–line (mTRL) calibrations to extract the distributed circuit parameters of transmission lines and solve for fluid permittivity. In this work, we demonstrate the utility of the device by measuring the permittivity of four organic solvents difficult to measure otherwise: hexane, heptane, decane, and toluene.\",\"PeriodicalId\":13272,\"journal\":{\"name\":\"IEEE Transactions on Microwave Theory and Techniques\",\"volume\":\"73 1\",\"pages\":\"258-265\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Microwave Theory and Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10754893/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10754893/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了一个玻璃微波微流控装置,用于确定从100 MHz到30 GHz的各种液体化学品的介电常数和相关的不确定度。传统的微波微流控装置使用基于聚合物的微流控层进行流体输送,但这些聚合物在有机溶剂中膨胀,不适合许多应用。我们的装置结合了玻璃微流体通道和铂共面波导(cpw),为宽带介电光谱提供了耐溶剂的结构。我们利用在晶圆探测站的矢量网络分析仪(VNA)测量宽带散射参数和多线透反射线(mTRL)校准来提取传输线的分布电路参数并求解流体介电常数。在这项工作中,我们通过测量四种难以测量的有机溶剂的介电常数来证明该装置的实用性:己烷、庚烷、癸烷和甲苯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Glass Microwave Microfluidic Devices for Broadband Characterization of Diverse Fluids
We demonstrate a glass microwave microfluidic device for determining the permittivity of a wide range of liquid chemicals from 100 MHz to 30 GHz with associated uncertainties. Conventional microwave microfluidic devices use polymer-based microfluidic layers for fluid delivery, but these polymers swell in organic solvents and are not suitable for many applications. Our device incorporates glass microfluidic channels with platinum coplanar waveguides (CPWs) to provide a solvent-resistant architecture for broadband dielectric spectroscopy. We utilize broadband scattering parameter measurements with a vector network analyzer (VNA) on a wafer probing station and multiline thru-reflect–line (mTRL) calibrations to extract the distributed circuit parameters of transmission lines and solve for fluid permittivity. In this work, we demonstrate the utility of the device by measuring the permittivity of four organic solvents difficult to measure otherwise: hexane, heptane, decane, and toluene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Microwave Theory and Techniques
IEEE Transactions on Microwave Theory and Techniques 工程技术-工程:电子与电气
CiteScore
8.60
自引率
18.60%
发文量
486
审稿时长
6 months
期刊介绍: The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
期刊最新文献
2024 Index IEEE Transactions on Microwave Theory and Techniques Vol. 72 Guest Editorial Table of Contents Editori-in-Chief Call for Applicants Corrections to “PCIe 5.0 Connector Distributed Physical-Based Circuit Model With Loading Resonances for Fast SI Diagnosis and Pathfinding”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1