Anusha Srikanthan;Aren Karapetyan;Vijay Kumar;Nikolai Matni
{"title":"基于admm的次优线性模型预测控制闭环分析","authors":"Anusha Srikanthan;Aren Karapetyan;Vijay Kumar;Nikolai Matni","doi":"10.1109/LCSYS.2024.3523241","DOIUrl":null,"url":null,"abstract":"Many practical applications of optimal control are subject to real-time computational constraints. When applying model predictive control (MPC) in these settings, respecting timing constraints is achieved by limiting the number of iterations of the optimization algorithm used to compute control actions at each time step, resulting in so-called suboptimal MPC. This letter proposes a suboptimal MPC scheme based on the alternating direction method of multipliers (ADMM). With a focus on the linear quadratic regulator problem with state and input constraints, we show how ADMM can be used to split the MPC problem into iterative updates of an unconstrained optimal control problem (with an analytical solution), and a dynamics-free feasibility step. We show that using a warm-start approach combined with enough iterations per time-step, yields an ADMM-based suboptimal MPC scheme which asymptotically stabilizes the system and maintains recursive feasibility.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3195-3200"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed-Loop Analysis of ADMM-Based Suboptimal Linear Model Predictive Control\",\"authors\":\"Anusha Srikanthan;Aren Karapetyan;Vijay Kumar;Nikolai Matni\",\"doi\":\"10.1109/LCSYS.2024.3523241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many practical applications of optimal control are subject to real-time computational constraints. When applying model predictive control (MPC) in these settings, respecting timing constraints is achieved by limiting the number of iterations of the optimization algorithm used to compute control actions at each time step, resulting in so-called suboptimal MPC. This letter proposes a suboptimal MPC scheme based on the alternating direction method of multipliers (ADMM). With a focus on the linear quadratic regulator problem with state and input constraints, we show how ADMM can be used to split the MPC problem into iterative updates of an unconstrained optimal control problem (with an analytical solution), and a dynamics-free feasibility step. We show that using a warm-start approach combined with enough iterations per time-step, yields an ADMM-based suboptimal MPC scheme which asymptotically stabilizes the system and maintains recursive feasibility.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3195-3200\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816385/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816385/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Closed-Loop Analysis of ADMM-Based Suboptimal Linear Model Predictive Control
Many practical applications of optimal control are subject to real-time computational constraints. When applying model predictive control (MPC) in these settings, respecting timing constraints is achieved by limiting the number of iterations of the optimization algorithm used to compute control actions at each time step, resulting in so-called suboptimal MPC. This letter proposes a suboptimal MPC scheme based on the alternating direction method of multipliers (ADMM). With a focus on the linear quadratic regulator problem with state and input constraints, we show how ADMM can be used to split the MPC problem into iterative updates of an unconstrained optimal control problem (with an analytical solution), and a dynamics-free feasibility step. We show that using a warm-start approach combined with enough iterations per time-step, yields an ADMM-based suboptimal MPC scheme which asymptotically stabilizes the system and maintains recursive feasibility.