基于admm的次优线性模型预测控制闭环分析

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-26 DOI:10.1109/LCSYS.2024.3523241
Anusha Srikanthan;Aren Karapetyan;Vijay Kumar;Nikolai Matni
{"title":"基于admm的次优线性模型预测控制闭环分析","authors":"Anusha Srikanthan;Aren Karapetyan;Vijay Kumar;Nikolai Matni","doi":"10.1109/LCSYS.2024.3523241","DOIUrl":null,"url":null,"abstract":"Many practical applications of optimal control are subject to real-time computational constraints. When applying model predictive control (MPC) in these settings, respecting timing constraints is achieved by limiting the number of iterations of the optimization algorithm used to compute control actions at each time step, resulting in so-called suboptimal MPC. This letter proposes a suboptimal MPC scheme based on the alternating direction method of multipliers (ADMM). With a focus on the linear quadratic regulator problem with state and input constraints, we show how ADMM can be used to split the MPC problem into iterative updates of an unconstrained optimal control problem (with an analytical solution), and a dynamics-free feasibility step. We show that using a warm-start approach combined with enough iterations per time-step, yields an ADMM-based suboptimal MPC scheme which asymptotically stabilizes the system and maintains recursive feasibility.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3195-3200"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed-Loop Analysis of ADMM-Based Suboptimal Linear Model Predictive Control\",\"authors\":\"Anusha Srikanthan;Aren Karapetyan;Vijay Kumar;Nikolai Matni\",\"doi\":\"10.1109/LCSYS.2024.3523241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many practical applications of optimal control are subject to real-time computational constraints. When applying model predictive control (MPC) in these settings, respecting timing constraints is achieved by limiting the number of iterations of the optimization algorithm used to compute control actions at each time step, resulting in so-called suboptimal MPC. This letter proposes a suboptimal MPC scheme based on the alternating direction method of multipliers (ADMM). With a focus on the linear quadratic regulator problem with state and input constraints, we show how ADMM can be used to split the MPC problem into iterative updates of an unconstrained optimal control problem (with an analytical solution), and a dynamics-free feasibility step. We show that using a warm-start approach combined with enough iterations per time-step, yields an ADMM-based suboptimal MPC scheme which asymptotically stabilizes the system and maintains recursive feasibility.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3195-3200\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816385/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816385/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最优控制的许多实际应用都受到实时计算约束。当在这些设置中应用模型预测控制(MPC)时,尊重时间约束是通过限制用于在每个时间步计算控制动作的优化算法的迭代次数来实现的,从而导致所谓的次优MPC。本文提出一种基于乘法器交替方向法(ADMM)的次优MPC方案。重点关注具有状态和输入约束的线性二次调节器问题,我们展示了如何使用ADMM将MPC问题分解为无约束最优控制问题(含解析解)的迭代更新和无动态可行性步骤。我们证明了使用热启动方法结合每个时间步长足够的迭代,产生了基于admm的次优MPC方案,该方案使系统渐近稳定并保持递归可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Closed-Loop Analysis of ADMM-Based Suboptimal Linear Model Predictive Control
Many practical applications of optimal control are subject to real-time computational constraints. When applying model predictive control (MPC) in these settings, respecting timing constraints is achieved by limiting the number of iterations of the optimization algorithm used to compute control actions at each time step, resulting in so-called suboptimal MPC. This letter proposes a suboptimal MPC scheme based on the alternating direction method of multipliers (ADMM). With a focus on the linear quadratic regulator problem with state and input constraints, we show how ADMM can be used to split the MPC problem into iterative updates of an unconstrained optimal control problem (with an analytical solution), and a dynamics-free feasibility step. We show that using a warm-start approach combined with enough iterations per time-step, yields an ADMM-based suboptimal MPC scheme which asymptotically stabilizes the system and maintains recursive feasibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Data-Driven Analysis of T-Product-Based Dynamical Systems Novel Sufficient Conditions for Stabilization of Linear Positive Discrete-Time Systems Using Event-Triggered Control Modified Finite-Time and Prescribed-Time Convergence Parameter Estimators via the DREM Method Refined Eigenvalue Decay Bounds for Controllability Gramians of Sparsely-Actuated Symmetric LTI Systems Distributed Thompson Sampling Under Constrained Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1