差分隐私保护联邦学习的一种新方法

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Communications Society Pub Date : 2024-12-23 DOI:10.1109/OJCOMS.2024.3521651
Anis Elgabli;Wessam Mesbah
{"title":"差分隐私保护联邦学习的一种新方法","authors":"Anis Elgabli;Wessam Mesbah","doi":"10.1109/OJCOMS.2024.3521651","DOIUrl":null,"url":null,"abstract":"In this paper, we start with a comprehensive evaluation of the effect of adding differential privacy (DP) to federated learning (FL) approaches, focusing on methodologies employing global (stochastic) gradient descent (SGD/GD), and local SGD/GD techniques. These global and local techniques are commonly referred to as FedSGD/FedGD and FedAvg, respectively. Our analysis reveals that, as far as only one local iteration is performed by each client before transmitting to the parameter server (PS) for FedGD, both FedGD and FedAvg achieve the same accuracy/loss for the same privacy guarantees, despite requiring different perturbation noise power. Furthermore, we propose a novel DP mechanism, which is shown to ensure privacy without compromising performance. In particular, we propose the sharing of a random seed (or a specified sequence of random seeds) among collaborative clients, where each client uses this seed to introduces perturbations to its updates prior to transmission to the PS. Importantly, due to the random seed sharing, clients possess the capability to negate the noise effects and recover their original global model. This mechanism preserves privacy both at a “curious” PS or at external eavesdroppers without compromising the performance of the final model at each client, thus mitigating the risk of inversion attacks aimed at retrieving (partially or fully) the clients’ data. Furthermore, the importance and effect of clipping in the practical implementation of DP mechanisms, in order to upper bound the perturbation noise, is discussed. Moreover, owing to the ability to cancel noise at individual clients, our proposed approach enables the introduction of arbitrarily high perturbation levels, and hence, clipping can be totally avoided, resulting in the same performance of noise-free standard FL approaches.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"466-476"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10812948","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach for Differential Privacy-Preserving Federated Learning\",\"authors\":\"Anis Elgabli;Wessam Mesbah\",\"doi\":\"10.1109/OJCOMS.2024.3521651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we start with a comprehensive evaluation of the effect of adding differential privacy (DP) to federated learning (FL) approaches, focusing on methodologies employing global (stochastic) gradient descent (SGD/GD), and local SGD/GD techniques. These global and local techniques are commonly referred to as FedSGD/FedGD and FedAvg, respectively. Our analysis reveals that, as far as only one local iteration is performed by each client before transmitting to the parameter server (PS) for FedGD, both FedGD and FedAvg achieve the same accuracy/loss for the same privacy guarantees, despite requiring different perturbation noise power. Furthermore, we propose a novel DP mechanism, which is shown to ensure privacy without compromising performance. In particular, we propose the sharing of a random seed (or a specified sequence of random seeds) among collaborative clients, where each client uses this seed to introduces perturbations to its updates prior to transmission to the PS. Importantly, due to the random seed sharing, clients possess the capability to negate the noise effects and recover their original global model. This mechanism preserves privacy both at a “curious” PS or at external eavesdroppers without compromising the performance of the final model at each client, thus mitigating the risk of inversion attacks aimed at retrieving (partially or fully) the clients’ data. Furthermore, the importance and effect of clipping in the practical implementation of DP mechanisms, in order to upper bound the perturbation noise, is discussed. Moreover, owing to the ability to cancel noise at individual clients, our proposed approach enables the introduction of arbitrarily high perturbation levels, and hence, clipping can be totally avoided, resulting in the same performance of noise-free standard FL approaches.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"466-476\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10812948\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812948/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10812948/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先全面评估了将差分隐私(DP)添加到联邦学习(FL)方法中的效果,重点介绍了采用全局(随机)梯度下降(SGD/GD)和局部SGD/GD技术的方法。这些全局和局部技术通常分别称为FedSGD/FedGD和fedag。我们的分析表明,只要每个客户端在将FedGD发送到参数服务器(PS)之前只执行一次本地迭代,FedGD和FedAvg都可以在相同的隐私保证下获得相同的精度/损失,尽管需要不同的扰动噪声功率。此外,我们提出了一种新的DP机制,该机制在不影响性能的情况下确保隐私。特别是,我们建议在协作客户端之间共享随机种子(或指定的随机种子序列),其中每个客户端在传输到PS之前使用该种子向其更新引入扰动。重要的是,由于随机种子共享,客户端具有消除噪声影响并恢复其原始全局模型的能力。这种机制在“好奇的”PS或外部窃听者面前保护隐私,而不会损害每个客户端的最终模型的性能,从而降低了旨在检索(部分或全部)客户端数据的反转攻击的风险。此外,还讨论了裁剪在实际实现中的重要性和作用,以达到扰动噪声的上界。此外,由于能够消除单个客户端的噪声,我们提出的方法可以引入任意高扰动水平,因此可以完全避免裁剪,从而获得与无噪声标准FL方法相同的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Approach for Differential Privacy-Preserving Federated Learning
In this paper, we start with a comprehensive evaluation of the effect of adding differential privacy (DP) to federated learning (FL) approaches, focusing on methodologies employing global (stochastic) gradient descent (SGD/GD), and local SGD/GD techniques. These global and local techniques are commonly referred to as FedSGD/FedGD and FedAvg, respectively. Our analysis reveals that, as far as only one local iteration is performed by each client before transmitting to the parameter server (PS) for FedGD, both FedGD and FedAvg achieve the same accuracy/loss for the same privacy guarantees, despite requiring different perturbation noise power. Furthermore, we propose a novel DP mechanism, which is shown to ensure privacy without compromising performance. In particular, we propose the sharing of a random seed (or a specified sequence of random seeds) among collaborative clients, where each client uses this seed to introduces perturbations to its updates prior to transmission to the PS. Importantly, due to the random seed sharing, clients possess the capability to negate the noise effects and recover their original global model. This mechanism preserves privacy both at a “curious” PS or at external eavesdroppers without compromising the performance of the final model at each client, thus mitigating the risk of inversion attacks aimed at retrieving (partially or fully) the clients’ data. Furthermore, the importance and effect of clipping in the practical implementation of DP mechanisms, in order to upper bound the perturbation noise, is discussed. Moreover, owing to the ability to cancel noise at individual clients, our proposed approach enables the introduction of arbitrarily high perturbation levels, and hence, clipping can be totally avoided, resulting in the same performance of noise-free standard FL approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
期刊最新文献
Table of Contents Front Cover Hierarchical Blockchain Radio Access Networks: Architecture, Modelling, and Performance Assessment Active RIS-NOMA Uplink in URLLC, Jamming Mitigation via Surrogate and Deep Learning Transceiver Design of a Secure Multiuser FDSS-Based DFT-Spread OFDM System for RIS- and UAV-Assisted THz Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1