使用毫米波雷达测量的烟雾探测和燃烧分析

IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Microwave Theory and Techniques Pub Date : 2024-10-30 DOI:10.1109/TMTT.2024.3479218
Francesca Schenkel;Thorsten Schultze;Christoph Baer;Jan C. Balzer;Ilona Rolfes;Christian Schulz
{"title":"使用毫米波雷达测量的烟雾探测和燃烧分析","authors":"Francesca Schenkel;Thorsten Schultze;Christoph Baer;Jan C. Balzer;Ilona Rolfes;Christian Schulz","doi":"10.1109/TMTT.2024.3479218","DOIUrl":null,"url":null,"abstract":"Understanding and detecting smoke effectively is crucial in emergency scenarios where traditional optical methods may fail. This article investigates the definition of smoke and its characterization from an electromagnetic perspective, focusing particularly on the use of frequency-modulated continuous wave (FMCW) radar sensors operating in the millimeter-wave range. We explore the influence of both laminar and turbulent smoke flows on the measurement accuracy. Our study is grounded in dielectric models in the millimeter-wave spectrum, demonstrating that the dielectric properties of smoke exhibit minimal variations. Consequently, we use phase-based radar signal processing to detect these subtle changes. Unlike previous studies that primarily evaluate sensor performance, this article aims to use the minimal impact on the measured signal to characterize different smoke scenarios comprehensively. Our findings demonstrate that radar sensors can provide valuable insights into smoke properties and are suitable to extend material model for millimeter-wave frequencies, enhancing situational awareness and response strategies in smoke-obscured environments.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 1","pages":"361-372"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738843","citationCount":"0","resultStr":"{\"title\":\"Smoke Detection and Combustion Analysis Using Millimeter-Wave Radar Measurements\",\"authors\":\"Francesca Schenkel;Thorsten Schultze;Christoph Baer;Jan C. Balzer;Ilona Rolfes;Christian Schulz\",\"doi\":\"10.1109/TMTT.2024.3479218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding and detecting smoke effectively is crucial in emergency scenarios where traditional optical methods may fail. This article investigates the definition of smoke and its characterization from an electromagnetic perspective, focusing particularly on the use of frequency-modulated continuous wave (FMCW) radar sensors operating in the millimeter-wave range. We explore the influence of both laminar and turbulent smoke flows on the measurement accuracy. Our study is grounded in dielectric models in the millimeter-wave spectrum, demonstrating that the dielectric properties of smoke exhibit minimal variations. Consequently, we use phase-based radar signal processing to detect these subtle changes. Unlike previous studies that primarily evaluate sensor performance, this article aims to use the minimal impact on the measured signal to characterize different smoke scenarios comprehensively. Our findings demonstrate that radar sensors can provide valuable insights into smoke properties and are suitable to extend material model for millimeter-wave frequencies, enhancing situational awareness and response strategies in smoke-obscured environments.\",\"PeriodicalId\":13272,\"journal\":{\"name\":\"IEEE Transactions on Microwave Theory and Techniques\",\"volume\":\"73 1\",\"pages\":\"361-372\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738843\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Microwave Theory and Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10738843/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10738843/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在传统光学方法可能失效的紧急情况下,有效地了解和探测烟雾至关重要。本文从电磁角度研究了烟雾的定义及其特征,特别关注在毫米波范围内工作的调频连续波(FMCW)雷达传感器的使用。我们探讨了层流和湍流烟雾流对测量精度的影响。我们的研究基于毫米波频谱中的介电模型,表明烟雾的介电特性表现出最小的变化。因此,我们使用基于相位的雷达信号处理来检测这些细微的变化。与以往主要评估传感器性能的研究不同,本文旨在利用对测量信号的最小影响来全面表征不同的烟雾场景。我们的研究结果表明,雷达传感器可以为烟雾特性提供有价值的见解,并且适合扩展毫米波频率的材料模型,增强烟雾遮挡环境中的态势感知和响应策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smoke Detection and Combustion Analysis Using Millimeter-Wave Radar Measurements
Understanding and detecting smoke effectively is crucial in emergency scenarios where traditional optical methods may fail. This article investigates the definition of smoke and its characterization from an electromagnetic perspective, focusing particularly on the use of frequency-modulated continuous wave (FMCW) radar sensors operating in the millimeter-wave range. We explore the influence of both laminar and turbulent smoke flows on the measurement accuracy. Our study is grounded in dielectric models in the millimeter-wave spectrum, demonstrating that the dielectric properties of smoke exhibit minimal variations. Consequently, we use phase-based radar signal processing to detect these subtle changes. Unlike previous studies that primarily evaluate sensor performance, this article aims to use the minimal impact on the measured signal to characterize different smoke scenarios comprehensively. Our findings demonstrate that radar sensors can provide valuable insights into smoke properties and are suitable to extend material model for millimeter-wave frequencies, enhancing situational awareness and response strategies in smoke-obscured environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Microwave Theory and Techniques
IEEE Transactions on Microwave Theory and Techniques 工程技术-工程:电子与电气
CiteScore
8.60
自引率
18.60%
发文量
486
审稿时长
6 months
期刊介绍: The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
期刊最新文献
2024 Index IEEE Transactions on Microwave Theory and Techniques Vol. 72 Guest Editorial Table of Contents Editori-in-Chief Call for Applicants Corrections to “PCIe 5.0 Connector Distributed Physical-Based Circuit Model With Loading Resonances for Fast SI Diagnosis and Pathfinding”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1