偏振不敏感石墨烯基可调谐超表面太赫兹双频吸收器

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-12-11 DOI:10.1109/TNANO.2024.3515459
Niten Kumar Panda;Sraddhanjali Mohapatra;Sudhakar Sahu
{"title":"偏振不敏感石墨烯基可调谐超表面太赫兹双频吸收器","authors":"Niten Kumar Panda;Sraddhanjali Mohapatra;Sudhakar Sahu","doi":"10.1109/TNANO.2024.3515459","DOIUrl":null,"url":null,"abstract":"This article presents an electronically tunable metasurface wideband absorber with a graphene-based unit cell designed for the lower terahertz (0.1 THz– 10 THz) region. Surface plasmonics and the controllable conductance of graphene make it ideal for this purpose. Dual wideband absorption (\n<inline-formula><tex-math>$ &gt;$</tex-math></inline-formula>\n90% absorptivity) was observed from 0.682 to 1.798 THz (90% fractional bandwidth) and 4.187 to 4.947 THz (16% fractional bandwidth). The absorber is insensitive to polarizations and oblique incidences up to 45°. The unit cell comprises a double elliptical-cross graphene monolayer on a polyimide substrate (dielectric constant: 3.5, loss tangent: 0.0024) backed by an ultra-thin gold layer. Plasmonic resonance, introduced by four semicircular slots, causes absorption from 4.15 to 4.95 THz. Absorption properties were verified through a transmission line model and finite element method (FEM) simulations. Tunability is investigated via gating potential, carrier relaxation time, and Fermi energy variations.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"34-41"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization Insensitive Graphene Based Tunable Metasurface Terahertz Dual-Band Absorber\",\"authors\":\"Niten Kumar Panda;Sraddhanjali Mohapatra;Sudhakar Sahu\",\"doi\":\"10.1109/TNANO.2024.3515459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an electronically tunable metasurface wideband absorber with a graphene-based unit cell designed for the lower terahertz (0.1 THz– 10 THz) region. Surface plasmonics and the controllable conductance of graphene make it ideal for this purpose. Dual wideband absorption (\\n<inline-formula><tex-math>$ &gt;$</tex-math></inline-formula>\\n90% absorptivity) was observed from 0.682 to 1.798 THz (90% fractional bandwidth) and 4.187 to 4.947 THz (16% fractional bandwidth). The absorber is insensitive to polarizations and oblique incidences up to 45°. The unit cell comprises a double elliptical-cross graphene monolayer on a polyimide substrate (dielectric constant: 3.5, loss tangent: 0.0024) backed by an ultra-thin gold layer. Plasmonic resonance, introduced by four semicircular slots, causes absorption from 4.15 to 4.95 THz. Absorption properties were verified through a transmission line model and finite element method (FEM) simulations. Tunability is investigated via gating potential, carrier relaxation time, and Fermi energy variations.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"24 \",\"pages\":\"34-41\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10791913/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10791913/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种电子可调谐的超表面宽带吸收器,其石墨烯基单元电池设计用于较低太赫兹(0.1太赫兹- 10太赫兹)区域。石墨烯的表面等离子体和可控电导使其成为这一目的的理想选择。在0.682 ~ 1.798 THz(90%分数带宽)和4.187 ~ 4.947 THz(16%分数带宽)范围内观察到双宽带吸收($ >$90%吸收率)。吸收器对偏振光和45°以内的斜入射不敏感。该单元电池包括聚酰亚胺衬底(介电常数:3.5,损耗正切:0.0024)上的双椭圆交叉石墨烯单层,背面是超薄金层。等离子体共振由四个半圆槽引入,引起4.15到4.95太赫兹的吸收。通过传输线模型和有限元仿真验证了吸光性能。通过门控电位、载流子弛豫时间和费米能量变化来研究可调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polarization Insensitive Graphene Based Tunable Metasurface Terahertz Dual-Band Absorber
This article presents an electronically tunable metasurface wideband absorber with a graphene-based unit cell designed for the lower terahertz (0.1 THz– 10 THz) region. Surface plasmonics and the controllable conductance of graphene make it ideal for this purpose. Dual wideband absorption ( $ >$ 90% absorptivity) was observed from 0.682 to 1.798 THz (90% fractional bandwidth) and 4.187 to 4.947 THz (16% fractional bandwidth). The absorber is insensitive to polarizations and oblique incidences up to 45°. The unit cell comprises a double elliptical-cross graphene monolayer on a polyimide substrate (dielectric constant: 3.5, loss tangent: 0.0024) backed by an ultra-thin gold layer. Plasmonic resonance, introduced by four semicircular slots, causes absorption from 4.15 to 4.95 THz. Absorption properties were verified through a transmission line model and finite element method (FEM) simulations. Tunability is investigated via gating potential, carrier relaxation time, and Fermi energy variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
Improvement of Surface Roughness in SiO2 Thin Films via Deuterium Annealing at 300 °C On the Importance of the Metal Catalyst Layer to the Performance of CNT-Based Supercapacitor Electrodes Table of Contents Front Cover IEEE Transactions on Nanotechnology Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1