基于主子tdc的符合检测SPAD图像传感器

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems I: Regular Papers Pub Date : 2024-11-25 DOI:10.1109/TCSI.2024.3503422
Chenggong Wan;Yi Zhu;Yingjie Ma;Xue Li;Lixia Zheng;Jin Wu;Weifeng Sun
{"title":"基于主子tdc的符合检测SPAD图像传感器","authors":"Chenggong Wan;Yi Zhu;Yingjie Ma;Xue Li;Lixia Zheng;Jin Wu;Weifeng Sun","doi":"10.1109/TCSI.2024.3503422","DOIUrl":null,"url":null,"abstract":"Light detection and ranging (Lidar) is usually enabled by Single-Photon Avalanche Detector (SPAD) sensors which may be falsely triggered by ambient light. Coincidence detection can suppress the ambient light at the cost of the lateral resolution. A \n<inline-formula> <tex-math>$64\\times 64$ </tex-math></inline-formula>\n SPAD image sensor with coincidence detection is proposed for Lidar. A main-sub time-to-digital converter (TDC), in which the main TDC is used for timestamping the coincidence window and the sub-TDC is used for timestamping the event within the coincidence window, is proposed to avoid the loss of the lateral resolution at a small power cost. A delay-locked loop (DLL) is adopted to generate an analog voltage for maintaining the length of the coincidence window against process-voltage-temperature (PVT) variations. A TDC code correction circuit is proposed to reduce the probability of TDC inter-segment errors to 0.7%. The SPAD image sensor is based on the 3D integration of a SPAD array with a ROIC. The ROIC chip is fabricated in a \n<inline-formula> <tex-math>$0.18\\mu $ </tex-math></inline-formula>\nm CMOS process. Driven by a 250 MHz multi-phase clock and a 100 MHz data readout clock, the chip achieves a maximum frame rate of 35.7 kframe/s, a timing resolution of 0.5 ns, and a timing range of \n<inline-formula> <tex-math>$2\\mu $ </tex-math></inline-formula>\ns. The typical average power consumption of the ROIC is 135.5 mW (@21.7 kframes/s). The measured differential nonlinearity (DNL) ranges from -0.74 to +0.82 least significant bit (LSB), and the integral nonlinearity (INL) ranges from -0.95 to +0.95 LSB.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 1","pages":"50-60"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A SPAD Image Sensor With Main-Sub-TDC-Based Coincidence Detection\",\"authors\":\"Chenggong Wan;Yi Zhu;Yingjie Ma;Xue Li;Lixia Zheng;Jin Wu;Weifeng Sun\",\"doi\":\"10.1109/TCSI.2024.3503422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light detection and ranging (Lidar) is usually enabled by Single-Photon Avalanche Detector (SPAD) sensors which may be falsely triggered by ambient light. Coincidence detection can suppress the ambient light at the cost of the lateral resolution. A \\n<inline-formula> <tex-math>$64\\\\times 64$ </tex-math></inline-formula>\\n SPAD image sensor with coincidence detection is proposed for Lidar. A main-sub time-to-digital converter (TDC), in which the main TDC is used for timestamping the coincidence window and the sub-TDC is used for timestamping the event within the coincidence window, is proposed to avoid the loss of the lateral resolution at a small power cost. A delay-locked loop (DLL) is adopted to generate an analog voltage for maintaining the length of the coincidence window against process-voltage-temperature (PVT) variations. A TDC code correction circuit is proposed to reduce the probability of TDC inter-segment errors to 0.7%. The SPAD image sensor is based on the 3D integration of a SPAD array with a ROIC. The ROIC chip is fabricated in a \\n<inline-formula> <tex-math>$0.18\\\\mu $ </tex-math></inline-formula>\\nm CMOS process. Driven by a 250 MHz multi-phase clock and a 100 MHz data readout clock, the chip achieves a maximum frame rate of 35.7 kframe/s, a timing resolution of 0.5 ns, and a timing range of \\n<inline-formula> <tex-math>$2\\\\mu $ </tex-math></inline-formula>\\ns. The typical average power consumption of the ROIC is 135.5 mW (@21.7 kframes/s). The measured differential nonlinearity (DNL) ranges from -0.74 to +0.82 least significant bit (LSB), and the integral nonlinearity (INL) ranges from -0.95 to +0.95 LSB.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":\"72 1\",\"pages\":\"50-60\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10766884/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10766884/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

光探测和测距(激光雷达)通常由单光子雪崩探测器(SPAD)传感器启用,该传感器可能被环境光错误触发。一致性检测可以以降低横向分辨率为代价抑制环境光。提出了一种用于激光雷达的具有符合检测功能的64 × 64 SPAD图像传感器。为了以较小的功耗避免横向分辨率的损失,提出了一种主子时间-数字转换器(TDC),其中主时间-数字转换器用于对符合窗口内的事件进行时间戳,子时间-数字转换器用于对符合窗口内的事件进行时间戳。采用延时锁环(DLL)产生模拟电压,以保持符合窗口的长度不受过程电压-温度(PVT)变化的影响。提出了一种TDC码校正电路,将TDC段间误差概率降低到0.7%。SPAD图像传感器是基于SPAD阵列与ROIC的3D集成。该ROIC芯片采用0.18 μ m CMOS工艺制造。该芯片采用250 MHz多相时钟和100 MHz数据读出时钟驱动,最大帧率为35.7 kframe/s,时序分辨率为0.5 ns,时序范围为2 μ s,典型平均功耗为135.5 mW (@21.7 kframes/s)。测量的微分非线性(DNL)范围为-0.74 ~ +0.82最低有效位(LSB),积分非线性(INL)范围为-0.95 ~ +0.95 LSB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A SPAD Image Sensor With Main-Sub-TDC-Based Coincidence Detection
Light detection and ranging (Lidar) is usually enabled by Single-Photon Avalanche Detector (SPAD) sensors which may be falsely triggered by ambient light. Coincidence detection can suppress the ambient light at the cost of the lateral resolution. A $64\times 64$ SPAD image sensor with coincidence detection is proposed for Lidar. A main-sub time-to-digital converter (TDC), in which the main TDC is used for timestamping the coincidence window and the sub-TDC is used for timestamping the event within the coincidence window, is proposed to avoid the loss of the lateral resolution at a small power cost. A delay-locked loop (DLL) is adopted to generate an analog voltage for maintaining the length of the coincidence window against process-voltage-temperature (PVT) variations. A TDC code correction circuit is proposed to reduce the probability of TDC inter-segment errors to 0.7%. The SPAD image sensor is based on the 3D integration of a SPAD array with a ROIC. The ROIC chip is fabricated in a $0.18\mu $ m CMOS process. Driven by a 250 MHz multi-phase clock and a 100 MHz data readout clock, the chip achieves a maximum frame rate of 35.7 kframe/s, a timing resolution of 0.5 ns, and a timing range of $2\mu $ s. The typical average power consumption of the ROIC is 135.5 mW (@21.7 kframes/s). The measured differential nonlinearity (DNL) ranges from -0.74 to +0.82 least significant bit (LSB), and the integral nonlinearity (INL) ranges from -0.95 to +0.95 LSB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
期刊最新文献
Table of Contents IEEE Circuits and Systems Society Information IEEE Transactions on Circuits and Systems--I: Regular Papers Information for Authors IEEE Transactions on Circuits and Systems--I: Regular Papers Publication Information Guest Editorial Special Issue on Emerging Hardware Security and Trust Technologies—AsianHOST 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1