随机数据驱动的预测控制:识别多步预测器的机会约束满足

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-26 DOI:10.1109/LCSYS.2024.3523238
Haldun Balim;Andrea Carron;Melanie N. Zeilinger;Johannes Köhler
{"title":"随机数据驱动的预测控制:识别多步预测器的机会约束满足","authors":"Haldun Balim;Andrea Carron;Melanie N. Zeilinger;Johannes Köhler","doi":"10.1109/LCSYS.2024.3523238","DOIUrl":null,"url":null,"abstract":"We propose a novel data-driven stochastic model predictive control framework for uncertain linear systems with noisy output measurements. Our approach leverages multi-step predictors to efficiently propagate uncertainty, ensuring chance constraint satisfaction. In particular, we present a strategy to identify multi-step predictors and quantify the associated uncertainty using a surrogate (data-driven) state space model. Then, we utilize the derived distribution to formulate a constraint tightening that ensures chance constraint satisfaction despite the parametric uncertainty. A numerical example highlights the reduced conservatism of handling parametric uncertainty in the proposed method compared to state-of-the-art solutions.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3249-3254"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Data-Driven Predictive Control: Chance-Constraint Satisfaction With Identified Multi-Step Predictors\",\"authors\":\"Haldun Balim;Andrea Carron;Melanie N. Zeilinger;Johannes Köhler\",\"doi\":\"10.1109/LCSYS.2024.3523238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel data-driven stochastic model predictive control framework for uncertain linear systems with noisy output measurements. Our approach leverages multi-step predictors to efficiently propagate uncertainty, ensuring chance constraint satisfaction. In particular, we present a strategy to identify multi-step predictors and quantify the associated uncertainty using a surrogate (data-driven) state space model. Then, we utilize the derived distribution to formulate a constraint tightening that ensures chance constraint satisfaction despite the parametric uncertainty. A numerical example highlights the reduced conservatism of handling parametric uncertainty in the proposed method compared to state-of-the-art solutions.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3249-3254\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816479/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816479/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对具有噪声输出的不确定线性系统,提出了一种新的数据驱动随机模型预测控制框架。我们的方法利用多步预测器来有效地传播不确定性,确保机会约束的满足。特别是,我们提出了一种策略来识别多步预测器,并使用代理(数据驱动)状态空间模型量化相关的不确定性。然后,我们利用推导出的分布来制定约束收紧,在参数不确定的情况下保证机会约束的满足。一个数值例子表明,与现有的解决方案相比,所提出的方法在处理参数不确定性方面的保守性降低了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Data-Driven Predictive Control: Chance-Constraint Satisfaction With Identified Multi-Step Predictors
We propose a novel data-driven stochastic model predictive control framework for uncertain linear systems with noisy output measurements. Our approach leverages multi-step predictors to efficiently propagate uncertainty, ensuring chance constraint satisfaction. In particular, we present a strategy to identify multi-step predictors and quantify the associated uncertainty using a surrogate (data-driven) state space model. Then, we utilize the derived distribution to formulate a constraint tightening that ensures chance constraint satisfaction despite the parametric uncertainty. A numerical example highlights the reduced conservatism of handling parametric uncertainty in the proposed method compared to state-of-the-art solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Robust and Exponential Stability in Barrier-Certified Systems via Contracting Piecewise Smooth Dynamics PID Control of MIMO Nonlinear Uncertain Systems With Low Relative Degrees Robust NMPC for Uncalibrated IBVS Control of AUVs Contraction Analysis of Continuation Method for Suboptimal Model Predictive Control Spiking Nonlinear Opinion Dynamics (S-NOD) for Agile Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1