Ghada R. Sallam, Mohammed F. El Basuini, Amal F. Fahmy, Mohamed A. Al-Absawey, Yusuf Jibril Habib, Rahma Ahmed Mustafa, Walied M. Fayed, Abdel-Fattah M. El-Sayed, Akram Ismael Shehata
{"title":"综合生物絮团技术对红罗非鱼养殖繁殖性能、生物反应和后代质量的盐度依赖性影响","authors":"Ghada R. Sallam, Mohammed F. El Basuini, Amal F. Fahmy, Mohamed A. Al-Absawey, Yusuf Jibril Habib, Rahma Ahmed Mustafa, Walied M. Fayed, Abdel-Fattah M. El-Sayed, Akram Ismael Shehata","doi":"10.1007/s10499-024-01804-w","DOIUrl":null,"url":null,"abstract":"<div><p>The study aims to evaluate the reproductive performance, serum biochemical indices, growth, antioxidant capacity, and immune response of Florida Red Tilapia (<i>Oreochromis</i> sp.) progeny reared at different salinity levels within biofloc technology (BFT) systems, focusing on egg production, fertilization rates, tolerance to oxidative stress, and offspring performance. Broodstock reared in biofloc systems (BF) were compared to those in clear water (Without biofloc, WBF) across three salinity levels (18, 28, and 36‰) over a 7-month period. The study also assessed the tolerance of fry reared in biofloc systems to direct transfer to high salinity (36‰) without prior acclimatization. A total of 216 females (initial body weight: 182 ± 1.8 g) and 72 males (initial body weight: 201 ± 0.88 g) were randomly assigned to 18 concrete tanks (2 × 6 × 1 m) to investigate the effects of BFT on spawning performance and larval survival under high-salinity conditions. The findings indicated that appropriate salinity (18‰) in BFT systems positively affected reproductive efficiency, enhanced immunological parameters, and improved growth performance, but elevated salinity levels (36‰) led to reduced reproductive success and hindered growth performance. Florida red tilapia thrive in water quality conditions that are within acceptable limits. High salinity environments led to increased dissolved oxygen but reduced pH, especially in BFT ponds. BFT improved reproductive performance, reduced spawning time, and increased egg production. It also improved hatchability, larval quality, and yolk sac absorption. The BFT broodstock showed higher levels of key proteins (total protein, albumin, and globulin) and improved immune parameters, which helped counteract the negative effects of elevated salinity and enhanced their overall health and stress tolerance. In high-salinity environments, offspring in BFT systems showed higher survival rates and growth rates. In conclusion, BFT improves the reproductive performance, growth, and immune response of Florida red tilapia under high salinity. It enhances egg production, hatchability, and larval survival, while also improving water quality and immune function, making it a sustainable solution for tilapia aquaculture in saline environments.</p></div>","PeriodicalId":8122,"journal":{"name":"Aquaculture International","volume":"33 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10499-024-01804-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Salinity-dependent effects of integrated biofloc technology on reproductive performance, biological responses, and offspring quality in red tilapia aquaculture\",\"authors\":\"Ghada R. Sallam, Mohammed F. El Basuini, Amal F. Fahmy, Mohamed A. Al-Absawey, Yusuf Jibril Habib, Rahma Ahmed Mustafa, Walied M. Fayed, Abdel-Fattah M. El-Sayed, Akram Ismael Shehata\",\"doi\":\"10.1007/s10499-024-01804-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study aims to evaluate the reproductive performance, serum biochemical indices, growth, antioxidant capacity, and immune response of Florida Red Tilapia (<i>Oreochromis</i> sp.) progeny reared at different salinity levels within biofloc technology (BFT) systems, focusing on egg production, fertilization rates, tolerance to oxidative stress, and offspring performance. Broodstock reared in biofloc systems (BF) were compared to those in clear water (Without biofloc, WBF) across three salinity levels (18, 28, and 36‰) over a 7-month period. The study also assessed the tolerance of fry reared in biofloc systems to direct transfer to high salinity (36‰) without prior acclimatization. A total of 216 females (initial body weight: 182 ± 1.8 g) and 72 males (initial body weight: 201 ± 0.88 g) were randomly assigned to 18 concrete tanks (2 × 6 × 1 m) to investigate the effects of BFT on spawning performance and larval survival under high-salinity conditions. The findings indicated that appropriate salinity (18‰) in BFT systems positively affected reproductive efficiency, enhanced immunological parameters, and improved growth performance, but elevated salinity levels (36‰) led to reduced reproductive success and hindered growth performance. Florida red tilapia thrive in water quality conditions that are within acceptable limits. High salinity environments led to increased dissolved oxygen but reduced pH, especially in BFT ponds. BFT improved reproductive performance, reduced spawning time, and increased egg production. It also improved hatchability, larval quality, and yolk sac absorption. The BFT broodstock showed higher levels of key proteins (total protein, albumin, and globulin) and improved immune parameters, which helped counteract the negative effects of elevated salinity and enhanced their overall health and stress tolerance. In high-salinity environments, offspring in BFT systems showed higher survival rates and growth rates. In conclusion, BFT improves the reproductive performance, growth, and immune response of Florida red tilapia under high salinity. It enhances egg production, hatchability, and larval survival, while also improving water quality and immune function, making it a sustainable solution for tilapia aquaculture in saline environments.</p></div>\",\"PeriodicalId\":8122,\"journal\":{\"name\":\"Aquaculture International\",\"volume\":\"33 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10499-024-01804-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture International\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10499-024-01804-w\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture International","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10499-024-01804-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Salinity-dependent effects of integrated biofloc technology on reproductive performance, biological responses, and offspring quality in red tilapia aquaculture
The study aims to evaluate the reproductive performance, serum biochemical indices, growth, antioxidant capacity, and immune response of Florida Red Tilapia (Oreochromis sp.) progeny reared at different salinity levels within biofloc technology (BFT) systems, focusing on egg production, fertilization rates, tolerance to oxidative stress, and offspring performance. Broodstock reared in biofloc systems (BF) were compared to those in clear water (Without biofloc, WBF) across three salinity levels (18, 28, and 36‰) over a 7-month period. The study also assessed the tolerance of fry reared in biofloc systems to direct transfer to high salinity (36‰) without prior acclimatization. A total of 216 females (initial body weight: 182 ± 1.8 g) and 72 males (initial body weight: 201 ± 0.88 g) were randomly assigned to 18 concrete tanks (2 × 6 × 1 m) to investigate the effects of BFT on spawning performance and larval survival under high-salinity conditions. The findings indicated that appropriate salinity (18‰) in BFT systems positively affected reproductive efficiency, enhanced immunological parameters, and improved growth performance, but elevated salinity levels (36‰) led to reduced reproductive success and hindered growth performance. Florida red tilapia thrive in water quality conditions that are within acceptable limits. High salinity environments led to increased dissolved oxygen but reduced pH, especially in BFT ponds. BFT improved reproductive performance, reduced spawning time, and increased egg production. It also improved hatchability, larval quality, and yolk sac absorption. The BFT broodstock showed higher levels of key proteins (total protein, albumin, and globulin) and improved immune parameters, which helped counteract the negative effects of elevated salinity and enhanced their overall health and stress tolerance. In high-salinity environments, offspring in BFT systems showed higher survival rates and growth rates. In conclusion, BFT improves the reproductive performance, growth, and immune response of Florida red tilapia under high salinity. It enhances egg production, hatchability, and larval survival, while also improving water quality and immune function, making it a sustainable solution for tilapia aquaculture in saline environments.
期刊介绍:
Aquaculture International is an international journal publishing original research papers, short communications, technical notes and review papers on all aspects of aquaculture.
The Journal covers topics such as the biology, physiology, pathology and genetics of cultured fish, crustaceans, molluscs and plants, especially new species; water quality of supply systems, fluctuations in water quality within farms and the environmental impacts of aquacultural operations; nutrition, feeding and stocking practices, especially as they affect the health and growth rates of cultured species; sustainable production techniques; bioengineering studies on the design and management of offshore and land-based systems; the improvement of quality and marketing of farmed products; sociological and societal impacts of aquaculture, and more.
This is the official Journal of the European Aquaculture Society.