人-机器人承载任务的综合生物力学:对未来协同工作的启示

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Autonomous Robots Pub Date : 2025-01-09 DOI:10.1007/s10514-024-10184-2
Verena Schuengel, Bjoern Braunstein, Fabian Goell, Daniel Braun, Nadine Reißner, Kirill Safronov, Christian Weiser, Jule Heieis, Kirsten Albracht
{"title":"人-机器人承载任务的综合生物力学:对未来协同工作的启示","authors":"Verena Schuengel,&nbsp;Bjoern Braunstein,&nbsp;Fabian Goell,&nbsp;Daniel Braun,&nbsp;Nadine Reißner,&nbsp;Kirill Safronov,&nbsp;Christian Weiser,&nbsp;Jule Heieis,&nbsp;Kirsten Albracht","doi":"10.1007/s10514-024-10184-2","DOIUrl":null,"url":null,"abstract":"<div><p>Patients with sarcopenia, who face difficulties in carrying heavy loads, may benefit from collaborative robotic assistance that is modeled after human–human interaction. The objective of this study is to describe the kinematics and spatio-temporal parameters during a collaborative carrying task involving both human and robotic partners. Fourteen subjects carried a table while moving forward with a human and a robotic partner. The movements were recorded using a three-dimensional motion capture system. The subjects successfully completed the task of carrying the table with the robot. No significant differences were found in the shoulder and elbow flexion/extension angles. In human–human dyads, the center of mass naturally oscillated vertically with an amplitude of approximately 2 cm. The here presented results of the human–human interaction serve as a model for the development of future robotic systems, designed for collaborative manipulation.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"49 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10184-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrative biomechanics of a human–robot carrying task: implications for future collaborative work\",\"authors\":\"Verena Schuengel,&nbsp;Bjoern Braunstein,&nbsp;Fabian Goell,&nbsp;Daniel Braun,&nbsp;Nadine Reißner,&nbsp;Kirill Safronov,&nbsp;Christian Weiser,&nbsp;Jule Heieis,&nbsp;Kirsten Albracht\",\"doi\":\"10.1007/s10514-024-10184-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Patients with sarcopenia, who face difficulties in carrying heavy loads, may benefit from collaborative robotic assistance that is modeled after human–human interaction. The objective of this study is to describe the kinematics and spatio-temporal parameters during a collaborative carrying task involving both human and robotic partners. Fourteen subjects carried a table while moving forward with a human and a robotic partner. The movements were recorded using a three-dimensional motion capture system. The subjects successfully completed the task of carrying the table with the robot. No significant differences were found in the shoulder and elbow flexion/extension angles. In human–human dyads, the center of mass naturally oscillated vertically with an amplitude of approximately 2 cm. The here presented results of the human–human interaction serve as a model for the development of future robotic systems, designed for collaborative manipulation.\\n</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-024-10184-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-024-10184-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10184-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

肌肉减少症患者在搬运重物时遇到困难,他们可能会受益于模仿人类互动的协作机器人协助。本研究的目的是描述在涉及人类和机器人伙伴的协作搬运任务中的运动学和时空参数。14名受试者与一个人和一个机器人搭档一起抬着桌子向前移动。这些动作是用三维动作捕捉系统记录下来的。受试者成功地完成了机器人搬运桌子的任务。肩关节和肘关节屈伸角度无显著差异。在人类二人组中,质心自然地垂直振荡,振幅约为2厘米。这里展示的人机交互结果可以作为未来机器人系统开发的模型,用于协作操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrative biomechanics of a human–robot carrying task: implications for future collaborative work

Patients with sarcopenia, who face difficulties in carrying heavy loads, may benefit from collaborative robotic assistance that is modeled after human–human interaction. The objective of this study is to describe the kinematics and spatio-temporal parameters during a collaborative carrying task involving both human and robotic partners. Fourteen subjects carried a table while moving forward with a human and a robotic partner. The movements were recorded using a three-dimensional motion capture system. The subjects successfully completed the task of carrying the table with the robot. No significant differences were found in the shoulder and elbow flexion/extension angles. In human–human dyads, the center of mass naturally oscillated vertically with an amplitude of approximately 2 cm. The here presented results of the human–human interaction serve as a model for the development of future robotic systems, designed for collaborative manipulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
期刊最新文献
View: visual imitation learning with waypoints Safe and stable teleoperation of quadrotor UAVs under haptic shared autonomy Synthesizing compact behavior trees for probabilistic robotics domains Integrative biomechanics of a human–robot carrying task: implications for future collaborative work Mori-zwanzig approach for belief abstraction with application to belief space planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1