{"title":"废玻璃纤维复合材料在流化床中的增值:全球变暖潜势和经济评估","authors":"K. Pender, L. Yang","doi":"10.1007/s10163-024-02122-2","DOIUrl":null,"url":null,"abstract":"<div><p>Glass fibre composites have become widely used in many applications, notably in wind turbine rotors. Fluidised bed valorization has demonstrated glass fibre recycling from waste composites, enabling reuse in traditional composite manufacturing technologies. This paper intendeds to inform long-term strategies for glass fibre composite waste by identify operating conditions that can optimise environmental and economic metrics for fluidised bed valorization. Experimentally derived operating parameters were integrated into energy models for a commercial-scale recycling process. An environmental assessment was conducted to compare the global warming potential of recycled glass fibres with that of virgin materials. In addition, a technoeconomic analysis was performed to assess the viability of the recycling technology at scale. The findings indicate that recycled glass fibre can achieve a global warming potential of less than 2 kg CO2e. per kg, contributing to a net reduction in greenhouse gas emissions when replacing virgin glass fibre. Furthermore, the economic analysis showed that a recycling facility with a capacity of just 10 kt per year could produce recycled glass fibre at a cost of $0.61/kg, significantly lower than the cost of virgin glass fibre. Overall, fluidised bed valorization presents an environmentally and economically sustainable solution for managing glass fibre composite waste.</p></div>","PeriodicalId":643,"journal":{"name":"Journal of Material Cycles and Waste Management","volume":"27 1","pages":"343 - 353"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10163-024-02122-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Waste glass fibre composites valorization using the fluidised bed: a global warming potential and economic assessment\",\"authors\":\"K. Pender, L. Yang\",\"doi\":\"10.1007/s10163-024-02122-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glass fibre composites have become widely used in many applications, notably in wind turbine rotors. Fluidised bed valorization has demonstrated glass fibre recycling from waste composites, enabling reuse in traditional composite manufacturing technologies. This paper intendeds to inform long-term strategies for glass fibre composite waste by identify operating conditions that can optimise environmental and economic metrics for fluidised bed valorization. Experimentally derived operating parameters were integrated into energy models for a commercial-scale recycling process. An environmental assessment was conducted to compare the global warming potential of recycled glass fibres with that of virgin materials. In addition, a technoeconomic analysis was performed to assess the viability of the recycling technology at scale. The findings indicate that recycled glass fibre can achieve a global warming potential of less than 2 kg CO2e. per kg, contributing to a net reduction in greenhouse gas emissions when replacing virgin glass fibre. Furthermore, the economic analysis showed that a recycling facility with a capacity of just 10 kt per year could produce recycled glass fibre at a cost of $0.61/kg, significantly lower than the cost of virgin glass fibre. Overall, fluidised bed valorization presents an environmentally and economically sustainable solution for managing glass fibre composite waste.</p></div>\",\"PeriodicalId\":643,\"journal\":{\"name\":\"Journal of Material Cycles and Waste Management\",\"volume\":\"27 1\",\"pages\":\"343 - 353\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10163-024-02122-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Cycles and Waste Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10163-024-02122-2\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Cycles and Waste Management","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10163-024-02122-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Waste glass fibre composites valorization using the fluidised bed: a global warming potential and economic assessment
Glass fibre composites have become widely used in many applications, notably in wind turbine rotors. Fluidised bed valorization has demonstrated glass fibre recycling from waste composites, enabling reuse in traditional composite manufacturing technologies. This paper intendeds to inform long-term strategies for glass fibre composite waste by identify operating conditions that can optimise environmental and economic metrics for fluidised bed valorization. Experimentally derived operating parameters were integrated into energy models for a commercial-scale recycling process. An environmental assessment was conducted to compare the global warming potential of recycled glass fibres with that of virgin materials. In addition, a technoeconomic analysis was performed to assess the viability of the recycling technology at scale. The findings indicate that recycled glass fibre can achieve a global warming potential of less than 2 kg CO2e. per kg, contributing to a net reduction in greenhouse gas emissions when replacing virgin glass fibre. Furthermore, the economic analysis showed that a recycling facility with a capacity of just 10 kt per year could produce recycled glass fibre at a cost of $0.61/kg, significantly lower than the cost of virgin glass fibre. Overall, fluidised bed valorization presents an environmentally and economically sustainable solution for managing glass fibre composite waste.
期刊介绍:
The Journal of Material Cycles and Waste Management has a twofold focus: research in technical, political, and environmental problems of material cycles and waste management; and information that contributes to the development of an interdisciplinary science of material cycles and waste management. Its aim is to develop solutions and prescriptions for material cycles.
The journal publishes original articles, reviews, and invited papers from a wide range of disciplines related to material cycles and waste management.
The journal is published in cooperation with the Japan Society of Material Cycles and Waste Management (JSMCWM) and the Korea Society of Waste Management (KSWM).