{"title":"哌啶基氨基酸离子液体的结构和动力学:计算研究","authors":"Khusboo Dubey, Raghu Nath Behera","doi":"10.1007/s00894-024-06266-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>There has been growing interest in amino acid ionic liquids because of their low-cost synthesis and superior biodegradability and biocompatibility compared to traditional ionic liquids. In this study, we have investigated the structure and dynamics of three ionic liquids consisting of N-butyl N-methyl piperidinium [Pip] cation with amino acid (lysine [Lys], histidine [His], and arginine [Arg]) anions. The radial distribution functions, the spatial distribution functions, and the coordination numbers have been used to analyze the structure in the bulk phase. The time-correlation functions for hydrogen bonds, ion pairs, and ion cage formation have been calculated to analyze the dynamic properties. The hydrogen bonds found between the ion pairs are mostly electrostatically dominant with moderate to weaker strengths. The [Pip][His] system showed the strongest interaction energy between the ion pairs, while the [Pip][Lys] system demonstrated faster dynamics consistent with its higher diffusion and ion conductivity.</p><h3>Method</h3><p>The density functional theory at M06-2X/6–311 + + G(d,p) level was employed for geometry optimization and wave function calculations. The theory of atoms-in-molecule was used for the topological analysis of electron density. The classical molecular dynamics simulations with OPLS-AA force field were employed to study the dynamics of the systems.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and dynamics of piperidinium based amino acid ionic liquids: a computational investigation\",\"authors\":\"Khusboo Dubey, Raghu Nath Behera\",\"doi\":\"10.1007/s00894-024-06266-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>There has been growing interest in amino acid ionic liquids because of their low-cost synthesis and superior biodegradability and biocompatibility compared to traditional ionic liquids. In this study, we have investigated the structure and dynamics of three ionic liquids consisting of N-butyl N-methyl piperidinium [Pip] cation with amino acid (lysine [Lys], histidine [His], and arginine [Arg]) anions. The radial distribution functions, the spatial distribution functions, and the coordination numbers have been used to analyze the structure in the bulk phase. The time-correlation functions for hydrogen bonds, ion pairs, and ion cage formation have been calculated to analyze the dynamic properties. The hydrogen bonds found between the ion pairs are mostly electrostatically dominant with moderate to weaker strengths. The [Pip][His] system showed the strongest interaction energy between the ion pairs, while the [Pip][Lys] system demonstrated faster dynamics consistent with its higher diffusion and ion conductivity.</p><h3>Method</h3><p>The density functional theory at M06-2X/6–311 + + G(d,p) level was employed for geometry optimization and wave function calculations. The theory of atoms-in-molecule was used for the topological analysis of electron density. The classical molecular dynamics simulations with OPLS-AA force field were employed to study the dynamics of the systems.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06266-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06266-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structure and dynamics of piperidinium based amino acid ionic liquids: a computational investigation
Context
There has been growing interest in amino acid ionic liquids because of their low-cost synthesis and superior biodegradability and biocompatibility compared to traditional ionic liquids. In this study, we have investigated the structure and dynamics of three ionic liquids consisting of N-butyl N-methyl piperidinium [Pip] cation with amino acid (lysine [Lys], histidine [His], and arginine [Arg]) anions. The radial distribution functions, the spatial distribution functions, and the coordination numbers have been used to analyze the structure in the bulk phase. The time-correlation functions for hydrogen bonds, ion pairs, and ion cage formation have been calculated to analyze the dynamic properties. The hydrogen bonds found between the ion pairs are mostly electrostatically dominant with moderate to weaker strengths. The [Pip][His] system showed the strongest interaction energy between the ion pairs, while the [Pip][Lys] system demonstrated faster dynamics consistent with its higher diffusion and ion conductivity.
Method
The density functional theory at M06-2X/6–311 + + G(d,p) level was employed for geometry optimization and wave function calculations. The theory of atoms-in-molecule was used for the topological analysis of electron density. The classical molecular dynamics simulations with OPLS-AA force field were employed to study the dynamics of the systems.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.